Cargando…
Factor Retention in Exploratory Factor Analysis With Missing Data
Determining the number of factors in exploratory factor analysis is arguably the most crucial decision a researcher faces when conducting the analysis. While several simulation studies exist that compare various so-called factor retention criteria under different data conditions, little is known abo...
Autor principal: | Goretzko, David |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9014734/ https://www.ncbi.nlm.nih.gov/pubmed/35444335 http://dx.doi.org/10.1177/00131644211022031 |
Ejemplares similares
-
Factor Retention Using Machine Learning With Ordinal Data
por: Goretzko, David, et al.
Publicado: (2022) -
Exploratory Graph Analysis for Factor Retention: Simulation Results for Continuous and Binary Data
por: Cosemans, Tim, et al.
Publicado: (2021) -
Exploratory factor analysis with structured residuals for brain network data
por: van Kesteren, Erik-Jan, et al.
Publicado: (2021) -
Exploratory factor analysis with SAS
por: Osborne, Jason W, et al.
Publicado: (2016) -
Exploratory spatial data analysis for the identification of risk factors to birth defects
por: Wu, Jilei, et al.
Publicado: (2004)