Cargando…

The SARS-CoV-2 helicase as a target for antiviral therapy: Identification of potential small molecule inhibitors by in silico modelling

Although vaccines that provide protection against severe illness from coronavirus disease (COVID-19) have been made available, emerging variant strains of severe acute respiratory syndrome 2 coronavirus 2 (SARS-CoV-2) are of concern. A different research direction involves investigation of antiviral...

Descripción completa

Detalles Bibliográficos
Autores principales: Pitsillou, Eleni, Liang, Julia, Hung, Andrew, Karagiannis, Tom C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9014761/
https://www.ncbi.nlm.nih.gov/pubmed/35462185
http://dx.doi.org/10.1016/j.jmgm.2022.108193
Descripción
Sumario:Although vaccines that provide protection against severe illness from coronavirus disease (COVID-19) have been made available, emerging variant strains of severe acute respiratory syndrome 2 coronavirus 2 (SARS-CoV-2) are of concern. A different research direction involves investigation of antiviral therapeutics. In addition to structural proteins, the SARS-CoV-2 non-structural proteins are of interest and this includes the helicase (nsp13). In this study, an initial screen of 300 ligands was performed to identify potential inhibitors of the SARS-CoV-2 nsp13 examining the nucleoside triphosphatase site (NTPase activity) as the target region. The antiviral activity of polyphenols has been previously reported in the literature and as a result, the phenolic compounds and fatty acids from the OliveNet™ library were utilised. Synthetic compounds with antimicrobial and anti-inflammatory properties were also selected. The structures of the SARS-CoV and MERS-CoV helicases, as well as the human RECQ-like DNA helicase, DHX9 helicase, PcrA helicase, hepatitis C NS3 helicase, and mouse Dna2 nuclease-helicase were used for comparison. As expected, sequence and structural homology between the various species was evident. A number of broad-spectrum and well-known inhibitors interacted with the NTPase active site highlighting the need to potentially identify more specific inhibitors for SARS-CoV-2. Acetylcysteine, clavulanic acid and homovanillic acid were identified as potential lead compounds for the SARS-CoV-2 helicase. Molecular dynamics simulations were performed with the leads bound to the SARS-CoV-2 helicase for 200 ns in triplicate, with favourable binding free energies to the NTPase site. Given their availability, further exploration of their potential inhibitory activity could be considered.