Cargando…
Design and Synthesis of Conformationally Diverse Pyrimidine-Embedded Medium/Macro- and Bridged Cycles via Skeletal Transformation
The rigidity and flexibility of small molecules are complementary in 3-dimensional ligand-protein interaction. Therefore, the chemical library with conformational diversity would be a valuable resource for investigating the influence of skeletal flexibility on the biological system. In this regard,...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9014854/ https://www.ncbi.nlm.nih.gov/pubmed/35444999 http://dx.doi.org/10.3389/fchem.2022.841250 |
Sumario: | The rigidity and flexibility of small molecules are complementary in 3-dimensional ligand-protein interaction. Therefore, the chemical library with conformational diversity would be a valuable resource for investigating the influence of skeletal flexibility on the biological system. In this regard, we designed and synthesized ten conformationally diverse pyrimidine-embedded medium/macro- and bridged cyclic scaffolds covering 7- to 14-member rings via an efficient skeletal transformation strategy. Their high conformational and shape diversity was confirmed by chemoinformatic analysis. |
---|