Cargando…
Evaluation method for cell-free in situ tissue-engineered vasculature monitoring: Proof of growth and development in a canine IVC model
We previously developed a non-cell-dependent biodegradable scaffold to create in situ tissue-engineered vasculature (iTEV) and tested it in a canine inferior vena cava (IVC) model. As iTEV features change dramatically during tissue generation, practical, simple, and accurate methods to evaluate iTEV...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9015146/ https://www.ncbi.nlm.nih.gov/pubmed/35436313 http://dx.doi.org/10.1371/journal.pone.0267274 |
_version_ | 1784688326473678848 |
---|---|
author | Matsumura, Goki Isayama, Noriko Sato, Hideki |
author_facet | Matsumura, Goki Isayama, Noriko Sato, Hideki |
author_sort | Matsumura, Goki |
collection | PubMed |
description | We previously developed a non-cell-dependent biodegradable scaffold to create in situ tissue-engineered vasculature (iTEV) and tested it in a canine inferior vena cava (IVC) model. As iTEV features change dramatically during tissue generation, practical, simple, and accurate methods to evaluate iTEV are needed. The present study examined the usefulness of a novel method to evaluate iTEV growth and remodeling according to a simple formula using angiography: hepatic vein (HV) index = (IVC–HV junction angle) ÷ (π × [minimal internal iTEV diameter ÷ 2](2)). HV index strongly correlated with the pressure gradient across iTEV, which tended to improve during the tissue generation period up to 12 months post-implantation. Time-course changes in HV index reflected iTEV tissue development and in-vivo characteristics, such as hemodynamic congestion. In conclusion, HV index is useful to assess iTEV graft function because it represents both the morphometrics and hemodynamics of iTEV with only diagnostic imaging data. |
format | Online Article Text |
id | pubmed-9015146 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-90151462022-04-19 Evaluation method for cell-free in situ tissue-engineered vasculature monitoring: Proof of growth and development in a canine IVC model Matsumura, Goki Isayama, Noriko Sato, Hideki PLoS One Research Article We previously developed a non-cell-dependent biodegradable scaffold to create in situ tissue-engineered vasculature (iTEV) and tested it in a canine inferior vena cava (IVC) model. As iTEV features change dramatically during tissue generation, practical, simple, and accurate methods to evaluate iTEV are needed. The present study examined the usefulness of a novel method to evaluate iTEV growth and remodeling according to a simple formula using angiography: hepatic vein (HV) index = (IVC–HV junction angle) ÷ (π × [minimal internal iTEV diameter ÷ 2](2)). HV index strongly correlated with the pressure gradient across iTEV, which tended to improve during the tissue generation period up to 12 months post-implantation. Time-course changes in HV index reflected iTEV tissue development and in-vivo characteristics, such as hemodynamic congestion. In conclusion, HV index is useful to assess iTEV graft function because it represents both the morphometrics and hemodynamics of iTEV with only diagnostic imaging data. Public Library of Science 2022-04-18 /pmc/articles/PMC9015146/ /pubmed/35436313 http://dx.doi.org/10.1371/journal.pone.0267274 Text en © 2022 Matsumura et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Matsumura, Goki Isayama, Noriko Sato, Hideki Evaluation method for cell-free in situ tissue-engineered vasculature monitoring: Proof of growth and development in a canine IVC model |
title | Evaluation method for cell-free in situ tissue-engineered vasculature monitoring: Proof of growth and development in a canine IVC model |
title_full | Evaluation method for cell-free in situ tissue-engineered vasculature monitoring: Proof of growth and development in a canine IVC model |
title_fullStr | Evaluation method for cell-free in situ tissue-engineered vasculature monitoring: Proof of growth and development in a canine IVC model |
title_full_unstemmed | Evaluation method for cell-free in situ tissue-engineered vasculature monitoring: Proof of growth and development in a canine IVC model |
title_short | Evaluation method for cell-free in situ tissue-engineered vasculature monitoring: Proof of growth and development in a canine IVC model |
title_sort | evaluation method for cell-free in situ tissue-engineered vasculature monitoring: proof of growth and development in a canine ivc model |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9015146/ https://www.ncbi.nlm.nih.gov/pubmed/35436313 http://dx.doi.org/10.1371/journal.pone.0267274 |
work_keys_str_mv | AT matsumuragoki evaluationmethodforcellfreeinsitutissueengineeredvasculaturemonitoringproofofgrowthanddevelopmentinacanineivcmodel AT isayamanoriko evaluationmethodforcellfreeinsitutissueengineeredvasculaturemonitoringproofofgrowthanddevelopmentinacanineivcmodel AT satohideki evaluationmethodforcellfreeinsitutissueengineeredvasculaturemonitoringproofofgrowthanddevelopmentinacanineivcmodel |