Cargando…

Open-source Web Portal for Managing Self-reported Data and Real-world Data Donation in Diabetes Research: Platform Feasibility Study

BACKGROUND: People with diabetes and their support networks have developed open-source automated insulin delivery systems to help manage their diabetes therapy, as well as to improve their quality of life and glycemic outcomes. Under the hashtag #WeAreNotWaiting, a wealth of knowledge and real-world...

Descripción completa

Detalles Bibliográficos
Autores principales: Cooper, Drew, Ubben, Tebbe, Knoll, Christine, Ballhausen, Hanne, O'Donnell, Shane, Braune, Katarina, Lewis, Dana
Formato: Online Artículo Texto
Lenguaje:English
Publicado: JMIR Publications 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9015748/
https://www.ncbi.nlm.nih.gov/pubmed/35357312
http://dx.doi.org/10.2196/33213
_version_ 1784688375952834560
author Cooper, Drew
Ubben, Tebbe
Knoll, Christine
Ballhausen, Hanne
O'Donnell, Shane
Braune, Katarina
Lewis, Dana
author_facet Cooper, Drew
Ubben, Tebbe
Knoll, Christine
Ballhausen, Hanne
O'Donnell, Shane
Braune, Katarina
Lewis, Dana
author_sort Cooper, Drew
collection PubMed
description BACKGROUND: People with diabetes and their support networks have developed open-source automated insulin delivery systems to help manage their diabetes therapy, as well as to improve their quality of life and glycemic outcomes. Under the hashtag #WeAreNotWaiting, a wealth of knowledge and real-world data have been generated by users of these systems but have been left largely untapped by research; opportunities for such multimodal studies remain open. OBJECTIVE: We aimed to evaluate the feasibility of several aspects of open-source automated insulin delivery systems including challenges related to data management and security across multiple disparate web-based platforms and challenges related to implementing follow-up studies. METHODS: We developed a mixed methods study to collect questionnaire responses and anonymized diabetes data donated by participants—which included adults and children with diabetes and their partners or caregivers recruited through multiple diabetes online communities. We managed both front-end participant interactions and back-end data management with our web portal (called the Gateway). Participant questionnaire data from electronic data capture (REDCap) and personal device data aggregation (Open Humans) platforms were pseudonymously and securely linked and stored within a custom-built database that used both open-source and commercial software. Participants were later given the option to include their health care providers in the study to validate their questionnaire responses; the database architecture was designed specifically with this kind of extensibility in mind. RESULTS: Of 1052 visitors to the study landing page, 930 participated and completed at least one questionnaire. After the implementation of health care professional validation of self-reported clinical outcomes to the study, an additional 164 individuals visited the landing page, with 142 completing at least one questionnaire. Of the optional study elements, 7 participant–health care professional dyads participated in the survey, and 97 participants who completed the survey donated their anonymized medical device data. CONCLUSIONS: The platform was accessible to participants while maintaining compliance with data regulations. The Gateway formalized a system of automated data matching between multiple data sets, which was a major benefit to researchers. Scalability of the platform was demonstrated with the later addition of self-reported data validation. This study demonstrated the feasibility of custom software solutions in addressing complex study designs. The Gateway portal code has been made available open-source and can be leveraged by other research groups.
format Online
Article
Text
id pubmed-9015748
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher JMIR Publications
record_format MEDLINE/PubMed
spelling pubmed-90157482022-04-19 Open-source Web Portal for Managing Self-reported Data and Real-world Data Donation in Diabetes Research: Platform Feasibility Study Cooper, Drew Ubben, Tebbe Knoll, Christine Ballhausen, Hanne O'Donnell, Shane Braune, Katarina Lewis, Dana JMIR Diabetes Original Paper BACKGROUND: People with diabetes and their support networks have developed open-source automated insulin delivery systems to help manage their diabetes therapy, as well as to improve their quality of life and glycemic outcomes. Under the hashtag #WeAreNotWaiting, a wealth of knowledge and real-world data have been generated by users of these systems but have been left largely untapped by research; opportunities for such multimodal studies remain open. OBJECTIVE: We aimed to evaluate the feasibility of several aspects of open-source automated insulin delivery systems including challenges related to data management and security across multiple disparate web-based platforms and challenges related to implementing follow-up studies. METHODS: We developed a mixed methods study to collect questionnaire responses and anonymized diabetes data donated by participants—which included adults and children with diabetes and their partners or caregivers recruited through multiple diabetes online communities. We managed both front-end participant interactions and back-end data management with our web portal (called the Gateway). Participant questionnaire data from electronic data capture (REDCap) and personal device data aggregation (Open Humans) platforms were pseudonymously and securely linked and stored within a custom-built database that used both open-source and commercial software. Participants were later given the option to include their health care providers in the study to validate their questionnaire responses; the database architecture was designed specifically with this kind of extensibility in mind. RESULTS: Of 1052 visitors to the study landing page, 930 participated and completed at least one questionnaire. After the implementation of health care professional validation of self-reported clinical outcomes to the study, an additional 164 individuals visited the landing page, with 142 completing at least one questionnaire. Of the optional study elements, 7 participant–health care professional dyads participated in the survey, and 97 participants who completed the survey donated their anonymized medical device data. CONCLUSIONS: The platform was accessible to participants while maintaining compliance with data regulations. The Gateway formalized a system of automated data matching between multiple data sets, which was a major benefit to researchers. Scalability of the platform was demonstrated with the later addition of self-reported data validation. This study demonstrated the feasibility of custom software solutions in addressing complex study designs. The Gateway portal code has been made available open-source and can be leveraged by other research groups. JMIR Publications 2022-03-31 /pmc/articles/PMC9015748/ /pubmed/35357312 http://dx.doi.org/10.2196/33213 Text en ©Drew Cooper, Tebbe Ubben, Christine Knoll, Hanne Ballhausen, Shane O'Donnell, Katarina Braune, Dana Lewis. Originally published in JMIR Diabetes (https://diabetes.jmir.org), 31.03.2022. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Diabetes, is properly cited. The complete bibliographic information, a link to the original publication on https://diabetes.jmir.org/, as well as this copyright and license information must be included.
spellingShingle Original Paper
Cooper, Drew
Ubben, Tebbe
Knoll, Christine
Ballhausen, Hanne
O'Donnell, Shane
Braune, Katarina
Lewis, Dana
Open-source Web Portal for Managing Self-reported Data and Real-world Data Donation in Diabetes Research: Platform Feasibility Study
title Open-source Web Portal for Managing Self-reported Data and Real-world Data Donation in Diabetes Research: Platform Feasibility Study
title_full Open-source Web Portal for Managing Self-reported Data and Real-world Data Donation in Diabetes Research: Platform Feasibility Study
title_fullStr Open-source Web Portal for Managing Self-reported Data and Real-world Data Donation in Diabetes Research: Platform Feasibility Study
title_full_unstemmed Open-source Web Portal for Managing Self-reported Data and Real-world Data Donation in Diabetes Research: Platform Feasibility Study
title_short Open-source Web Portal for Managing Self-reported Data and Real-world Data Donation in Diabetes Research: Platform Feasibility Study
title_sort open-source web portal for managing self-reported data and real-world data donation in diabetes research: platform feasibility study
topic Original Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9015748/
https://www.ncbi.nlm.nih.gov/pubmed/35357312
http://dx.doi.org/10.2196/33213
work_keys_str_mv AT cooperdrew opensourcewebportalformanagingselfreporteddataandrealworlddatadonationindiabetesresearchplatformfeasibilitystudy
AT ubbentebbe opensourcewebportalformanagingselfreporteddataandrealworlddatadonationindiabetesresearchplatformfeasibilitystudy
AT knollchristine opensourcewebportalformanagingselfreporteddataandrealworlddatadonationindiabetesresearchplatformfeasibilitystudy
AT ballhausenhanne opensourcewebportalformanagingselfreporteddataandrealworlddatadonationindiabetesresearchplatformfeasibilitystudy
AT odonnellshane opensourcewebportalformanagingselfreporteddataandrealworlddatadonationindiabetesresearchplatformfeasibilitystudy
AT braunekatarina opensourcewebportalformanagingselfreporteddataandrealworlddatadonationindiabetesresearchplatformfeasibilitystudy
AT lewisdana opensourcewebportalformanagingselfreporteddataandrealworlddatadonationindiabetesresearchplatformfeasibilitystudy