Cargando…

DISCO: Species Tree Inference using Multicopy Gene Family Tree Decomposition

Species tree inference from gene family trees is a significant problem in computational biology. However, gene tree heterogeneity, which can be caused by several factors including gene duplication and loss, makes the estimation of species trees very challenging. While there have been several species...

Descripción completa

Detalles Bibliográficos
Autores principales: Willson, James, Roddur, Mrinmoy Saha, Liu, Baqiao, Zaharias, Paul, Warnow, Tandy
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9016570/
https://www.ncbi.nlm.nih.gov/pubmed/34450658
http://dx.doi.org/10.1093/sysbio/syab070
_version_ 1784688557344948224
author Willson, James
Roddur, Mrinmoy Saha
Liu, Baqiao
Zaharias, Paul
Warnow, Tandy
author_facet Willson, James
Roddur, Mrinmoy Saha
Liu, Baqiao
Zaharias, Paul
Warnow, Tandy
author_sort Willson, James
collection PubMed
description Species tree inference from gene family trees is a significant problem in computational biology. However, gene tree heterogeneity, which can be caused by several factors including gene duplication and loss, makes the estimation of species trees very challenging. While there have been several species tree estimation methods introduced in recent years to specifically address gene tree heterogeneity due to gene duplication and loss (such as DupTree, FastMulRFS, ASTRAL-Pro, and SpeciesRax), many incur high cost in terms of both running time and memory. We introduce a new approach, DISCO, that decomposes the multi-copy gene family trees into many single copy trees, which allows for methods previously designed for species tree inference in a single copy gene tree context to be used. We prove that using DISCO with ASTRAL (i.e., ASTRAL-DISCO) is statistically consistent under the GDL model, provided that ASTRAL-Pro correctly roots and tags each gene family tree. We evaluate DISCO paired with different methods for estimating species trees from single copy genes (e.g., ASTRAL, ASTRID, and IQ-TREE) under a wide range of model conditions, and establish that high accuracy can be obtained even when ASTRAL-Pro is not able to correctly roots and tags the gene family trees. We also compare results using MI, an alternative decomposition strategy from Yang Y. and Smith S.A. (2014), and find that DISCO provides better accuracy, most likely as a result of covering more of the gene family tree leafset in the output decomposition. [Concatenation analysis; gene duplication and loss; species tree inference; summary method.]
format Online
Article
Text
id pubmed-9016570
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-90165702022-04-20 DISCO: Species Tree Inference using Multicopy Gene Family Tree Decomposition Willson, James Roddur, Mrinmoy Saha Liu, Baqiao Zaharias, Paul Warnow, Tandy Syst Biol Regular Articles Species tree inference from gene family trees is a significant problem in computational biology. However, gene tree heterogeneity, which can be caused by several factors including gene duplication and loss, makes the estimation of species trees very challenging. While there have been several species tree estimation methods introduced in recent years to specifically address gene tree heterogeneity due to gene duplication and loss (such as DupTree, FastMulRFS, ASTRAL-Pro, and SpeciesRax), many incur high cost in terms of both running time and memory. We introduce a new approach, DISCO, that decomposes the multi-copy gene family trees into many single copy trees, which allows for methods previously designed for species tree inference in a single copy gene tree context to be used. We prove that using DISCO with ASTRAL (i.e., ASTRAL-DISCO) is statistically consistent under the GDL model, provided that ASTRAL-Pro correctly roots and tags each gene family tree. We evaluate DISCO paired with different methods for estimating species trees from single copy genes (e.g., ASTRAL, ASTRID, and IQ-TREE) under a wide range of model conditions, and establish that high accuracy can be obtained even when ASTRAL-Pro is not able to correctly roots and tags the gene family trees. We also compare results using MI, an alternative decomposition strategy from Yang Y. and Smith S.A. (2014), and find that DISCO provides better accuracy, most likely as a result of covering more of the gene family tree leafset in the output decomposition. [Concatenation analysis; gene duplication and loss; species tree inference; summary method.] Oxford University Press 2021-08-27 /pmc/articles/PMC9016570/ /pubmed/34450658 http://dx.doi.org/10.1093/sysbio/syab070 Text en © The Author(s) 2021. Published by Oxford University Press on behalf of the Society of Systematic Biologists. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Regular Articles
Willson, James
Roddur, Mrinmoy Saha
Liu, Baqiao
Zaharias, Paul
Warnow, Tandy
DISCO: Species Tree Inference using Multicopy Gene Family Tree Decomposition
title DISCO: Species Tree Inference using Multicopy Gene Family Tree Decomposition
title_full DISCO: Species Tree Inference using Multicopy Gene Family Tree Decomposition
title_fullStr DISCO: Species Tree Inference using Multicopy Gene Family Tree Decomposition
title_full_unstemmed DISCO: Species Tree Inference using Multicopy Gene Family Tree Decomposition
title_short DISCO: Species Tree Inference using Multicopy Gene Family Tree Decomposition
title_sort disco: species tree inference using multicopy gene family tree decomposition
topic Regular Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9016570/
https://www.ncbi.nlm.nih.gov/pubmed/34450658
http://dx.doi.org/10.1093/sysbio/syab070
work_keys_str_mv AT willsonjames discospeciestreeinferenceusingmulticopygenefamilytreedecomposition
AT roddurmrinmoysaha discospeciestreeinferenceusingmulticopygenefamilytreedecomposition
AT liubaqiao discospeciestreeinferenceusingmulticopygenefamilytreedecomposition
AT zahariaspaul discospeciestreeinferenceusingmulticopygenefamilytreedecomposition
AT warnowtandy discospeciestreeinferenceusingmulticopygenefamilytreedecomposition