Cargando…
DISCO: Species Tree Inference using Multicopy Gene Family Tree Decomposition
Species tree inference from gene family trees is a significant problem in computational biology. However, gene tree heterogeneity, which can be caused by several factors including gene duplication and loss, makes the estimation of species trees very challenging. While there have been several species...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9016570/ https://www.ncbi.nlm.nih.gov/pubmed/34450658 http://dx.doi.org/10.1093/sysbio/syab070 |
_version_ | 1784688557344948224 |
---|---|
author | Willson, James Roddur, Mrinmoy Saha Liu, Baqiao Zaharias, Paul Warnow, Tandy |
author_facet | Willson, James Roddur, Mrinmoy Saha Liu, Baqiao Zaharias, Paul Warnow, Tandy |
author_sort | Willson, James |
collection | PubMed |
description | Species tree inference from gene family trees is a significant problem in computational biology. However, gene tree heterogeneity, which can be caused by several factors including gene duplication and loss, makes the estimation of species trees very challenging. While there have been several species tree estimation methods introduced in recent years to specifically address gene tree heterogeneity due to gene duplication and loss (such as DupTree, FastMulRFS, ASTRAL-Pro, and SpeciesRax), many incur high cost in terms of both running time and memory. We introduce a new approach, DISCO, that decomposes the multi-copy gene family trees into many single copy trees, which allows for methods previously designed for species tree inference in a single copy gene tree context to be used. We prove that using DISCO with ASTRAL (i.e., ASTRAL-DISCO) is statistically consistent under the GDL model, provided that ASTRAL-Pro correctly roots and tags each gene family tree. We evaluate DISCO paired with different methods for estimating species trees from single copy genes (e.g., ASTRAL, ASTRID, and IQ-TREE) under a wide range of model conditions, and establish that high accuracy can be obtained even when ASTRAL-Pro is not able to correctly roots and tags the gene family trees. We also compare results using MI, an alternative decomposition strategy from Yang Y. and Smith S.A. (2014), and find that DISCO provides better accuracy, most likely as a result of covering more of the gene family tree leafset in the output decomposition. [Concatenation analysis; gene duplication and loss; species tree inference; summary method.] |
format | Online Article Text |
id | pubmed-9016570 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-90165702022-04-20 DISCO: Species Tree Inference using Multicopy Gene Family Tree Decomposition Willson, James Roddur, Mrinmoy Saha Liu, Baqiao Zaharias, Paul Warnow, Tandy Syst Biol Regular Articles Species tree inference from gene family trees is a significant problem in computational biology. However, gene tree heterogeneity, which can be caused by several factors including gene duplication and loss, makes the estimation of species trees very challenging. While there have been several species tree estimation methods introduced in recent years to specifically address gene tree heterogeneity due to gene duplication and loss (such as DupTree, FastMulRFS, ASTRAL-Pro, and SpeciesRax), many incur high cost in terms of both running time and memory. We introduce a new approach, DISCO, that decomposes the multi-copy gene family trees into many single copy trees, which allows for methods previously designed for species tree inference in a single copy gene tree context to be used. We prove that using DISCO with ASTRAL (i.e., ASTRAL-DISCO) is statistically consistent under the GDL model, provided that ASTRAL-Pro correctly roots and tags each gene family tree. We evaluate DISCO paired with different methods for estimating species trees from single copy genes (e.g., ASTRAL, ASTRID, and IQ-TREE) under a wide range of model conditions, and establish that high accuracy can be obtained even when ASTRAL-Pro is not able to correctly roots and tags the gene family trees. We also compare results using MI, an alternative decomposition strategy from Yang Y. and Smith S.A. (2014), and find that DISCO provides better accuracy, most likely as a result of covering more of the gene family tree leafset in the output decomposition. [Concatenation analysis; gene duplication and loss; species tree inference; summary method.] Oxford University Press 2021-08-27 /pmc/articles/PMC9016570/ /pubmed/34450658 http://dx.doi.org/10.1093/sysbio/syab070 Text en © The Author(s) 2021. Published by Oxford University Press on behalf of the Society of Systematic Biologists. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Regular Articles Willson, James Roddur, Mrinmoy Saha Liu, Baqiao Zaharias, Paul Warnow, Tandy DISCO: Species Tree Inference using Multicopy Gene Family Tree Decomposition |
title | DISCO: Species Tree Inference using Multicopy Gene Family Tree Decomposition |
title_full | DISCO: Species Tree Inference using Multicopy Gene Family Tree Decomposition |
title_fullStr | DISCO: Species Tree Inference using Multicopy Gene Family Tree Decomposition |
title_full_unstemmed | DISCO: Species Tree Inference using Multicopy Gene Family Tree Decomposition |
title_short | DISCO: Species Tree Inference using Multicopy Gene Family Tree Decomposition |
title_sort | disco: species tree inference using multicopy gene family tree decomposition |
topic | Regular Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9016570/ https://www.ncbi.nlm.nih.gov/pubmed/34450658 http://dx.doi.org/10.1093/sysbio/syab070 |
work_keys_str_mv | AT willsonjames discospeciestreeinferenceusingmulticopygenefamilytreedecomposition AT roddurmrinmoysaha discospeciestreeinferenceusingmulticopygenefamilytreedecomposition AT liubaqiao discospeciestreeinferenceusingmulticopygenefamilytreedecomposition AT zahariaspaul discospeciestreeinferenceusingmulticopygenefamilytreedecomposition AT warnowtandy discospeciestreeinferenceusingmulticopygenefamilytreedecomposition |