Cargando…
Modeling and Predicting Heavy-Duty Vehicle Engine-Out and Tailpipe Nitrogen Oxide (NO(x)) Emissions Using Deep Learning
As emissions regulations for transportation become stricter, it is increasingly important to develop accurate nitrogen oxide (NO(x)) emissions models for heavy-duty vehicles. However, estimation of transient NO(x) emissions using physics-based models is challenging due to its highly dynamic nature,...
Autores principales: | Pillai, Rinav, Triantopoulos, Vassilis, Berahas, Albert S., Brusstar, Matthew, Sun, Ruonan, Nevius, Tim, Boehman, André L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9016636/ https://www.ncbi.nlm.nih.gov/pubmed/35445105 http://dx.doi.org/10.3389/fmech.2022.840310 |
Ejemplares similares
-
Regulating particle number measurements from the tailpipe of light-duty vehicles: The next step?
por: Giechaskiel, Barouch, et al.
Publicado: (2019) -
Theoretical Design of the Scattering-Based Sensor for Analysis of the Vehicle Tailpipe Emission
por: Molaie, Sama, et al.
Publicado: (2020) -
Intercomparison of real-time tailpipe ammonia measurements from vehicles tested over the new world-harmonized light-duty vehicle test cycle (WLTC)
por: Suarez-Bertoa, Ricardo, et al.
Publicado: (2015) -
Prenatal exposure to tailpipe and non-tailpipe tracers of particulate matter pollution and autism spectrum disorders
por: Rahman, Md Mostafijur, et al.
Publicado: (2023) -
Solid Particle Number Emission Factors of Euro VI Heavy-Duty Vehicles on the Road and in the Laboratory
por: Giechaskiel, Barouch
Publicado: (2018)