Cargando…
Deep Neural Network-Assisted Drug Recommendation Systems for Identifying Potential Drug–Target Interactions
[Image: see text] In silico methods to identify novel drug–target interactions (DTIs) have gained significant importance over conventional techniques owing to their labor-intensive and low-throughput nature. Here, we present a machine learning-based multiclass classification workflow that segregates...
Autores principales: | Kalakoti, Yogesh, Yadav, Shashank, Sundar, Durai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9016825/ https://www.ncbi.nlm.nih.gov/pubmed/35449922 http://dx.doi.org/10.1021/acsomega.2c00424 |
Ejemplares similares
-
TransDTI: Transformer-Based Language Models for Estimating
DTIs and Building a Drug Recommendation Workflow
por: Kalakoti, Yogesh, et al.
Publicado: (2022) -
Deep learning assisted multi-omics integration for survival and drug-response prediction in breast cancer
por: Malik, Vidhi, et al.
Publicado: (2021) -
SurvCNN: A Discrete Time-to-Event Cancer Survival Estimation Framework Using Image Representations of Omics Data
por: Kalakoti, Yogesh, et al.
Publicado: (2021) -
Genome Sequence of a Potent Biosurfactant-Producing Bacterium, Franconibacter sp. Strain IITDAS19
por: Sharma, Jyoti, et al.
Publicado: (2022) -
Overfit deep neural network for predicting drug-target interactions
por: Xiaolin, Xiao, et al.
Publicado: (2023)