Cargando…

The treatment zone decentration and corneal refractive profile changes in children undergoing orthokeratology treatment

BACKGROUND: To confirm the association between treatment-zone (TZ) decentration and axial length growth (ALG) in children who underwent orthokeratology; and to explore the association between TZ decentration and relative corneal refractive power (RCRP) profile, which was known to be significantly as...

Descripción completa

Detalles Bibliográficos
Autores principales: Lin, Weiping, Gu, Tianpu, Bi, Hua, Du, Bei, Zhang, Bin, Wei, Ruihua
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9016930/
https://www.ncbi.nlm.nih.gov/pubmed/35436922
http://dx.doi.org/10.1186/s12886-022-02396-w
Descripción
Sumario:BACKGROUND: To confirm the association between treatment-zone (TZ) decentration and axial length growth (ALG) in children who underwent orthokeratology; and to explore the association between TZ decentration and relative corneal refractive power (RCRP) profile, which was known to be significantly associated with ALG retardation. METHODS: Four hundred myopic children of age 12 years participated in the study, with 200 wearing orthokeratology lenses and the other 200 wearing single-vision spectacle as the controls. Cycloplegic refraction was performed at baseline. Axial length was measured at baseline and 12 months after initial lens wear, and ALG was defined as the difference. In the ortho-k group, TZ decentration and the RCRP map were calculated from the topography map obtained at the 12-month visit. RCRP were summed within various chord radii from the cornea center, and the association to TZ decentration, spherical equivalent (SE), ALG were analyzed with linear regressions. RESULTS: Compared to the controls, children wearing orthokeratology lenses had significantly smaller ALG over 1 year (0.1 ± 0.15 mm vs. 0.32 ± 0.17 mm, p < 0.001). ALG was significantly and negatively associated with summed RCRP within the central cornea of 2 mm in radius. The mean TZ decentration was 0.62 ± 0.25 mm, and the mean direction was 214.26 ± 7.39 degrees. ALG was negatively associated with the TZ decentration magnitude (p < 0.01), but not the direction (p = 0.905). TZ decentration caused an asymmetrical distribution of the RCRP with the nasal side plus power shifting towards the corneal center. For chord radius ranging 1-2 mm, the association between TZ decentration and the summed RCRP were significant, and the proportion of variance accountable increased with chord radius. For chord radius beyond 1.5 mm, the association between baseline spherical equivalent (SE) and summed RCRP was significant. The portion of variance accountable by SE increased and peaked in 2.5 mm chord radius. CONCLUSIONS: A larger TZ decentration was associated with a larger summed RCRP in the central cornea. It may be one of the possible reasons why TZ decentration is beneficial to retarding myopia progression.