Cargando…

KIF14 affects cell cycle arrest and cell viability in cervical cancer by regulating the p27(Kip1) pathway

BACKGROUND: Cervical cancer is a kind of malignant gynecological tumor. The first choice for treating cervical cancer is still a combination of surgery and chemoradiotherapy, but the 5-year survival rate remains poor. Therefore, researchers are trying to find new ways to diagnose and treat cervical...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Jie, Buranjiang, Gulimire, Mutalifu, Zuohelaguli, Jin, Hua, Yao, Liyan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9016959/
https://www.ncbi.nlm.nih.gov/pubmed/35439960
http://dx.doi.org/10.1186/s12957-022-02585-3
Descripción
Sumario:BACKGROUND: Cervical cancer is a kind of malignant gynecological tumor. The first choice for treating cervical cancer is still a combination of surgery and chemoradiotherapy, but the 5-year survival rate remains poor. Therefore, researchers are trying to find new ways to diagnose and treat cervical cancer early. METHODS: The expression level of KIF14 in cells and tissues was determined via qRT–PCR. The ability of the cells to proliferate, migrate, and invade was examined using CCK-8 assay kits, colony formation assays, and Transwell chambers. The expression levels of Cyclin D1, Cyclin B1, p21, and p27 were also detected using western blot assays. RESULTS: The results suggested that p27 is a key regulatory factor in the KIF14-mediated regulation of the cell cycle. In addition, KIF14 knockdown promotes malignancy in cervical cancer cells by inhibiting p27 degradation, resulting in cell cycle arrest. CONCLUSIONS: KIF14 is an oncogene in cervical cancer, and knocking down KIF14 causes cell cycle arrest by inhibiting p27 degradation, thus affecting cell viability, proliferation, and migration. These results provide a potential therapeutic target for cervical cancer.