Cargando…
Microscopic nuclei classification, segmentation, and detection with improved deep convolutional neural networks (DCNN)
BACKGROUND: Nuclei classification, segmentation, and detection from pathological images are challenging tasks due to cellular heterogeneity in the Whole Slide Images (WSI). METHODS: In this work, we propose advanced DCNN models for nuclei classification, segmentation, and detection tasks. The Densel...
Autores principales: | Alom, Zahangir, Asari, Vijayan K., Parwani, Anil, Taha, Tarek M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9017017/ https://www.ncbi.nlm.nih.gov/pubmed/35436941 http://dx.doi.org/10.1186/s13000-022-01189-5 |
Ejemplares similares
-
Handwritten Bangla Character Recognition Using the State-of-the-Art Deep Convolutional Neural Networks
por: Alom, Md Zahangir, et al.
Publicado: (2018) -
Non-uniqueness Phenomenon of Object Representation in Modeling IT Cortex by Deep Convolutional Neural Network (DCNN)
por: Dong, Qiulei, et al.
Publicado: (2020) -
An automatic nuclei segmentation method based on deep convolutional neural networks for histopathology images
por: Jung, Hwejin, et al.
Publicado: (2019) -
Synthetic CT Generation Based on T2 Weighted MRI of Nasopharyngeal Carcinoma (NPC) Using a Deep Convolutional Neural Network (DCNN)
por: Wang, Yuenan, et al.
Publicado: (2019) -
Automated segmentation of deep brain nuclei using convolutional neural networks and susceptibility weighted imaging
por: Beliveau, Vincent, et al.
Publicado: (2021)