Cargando…
Machine learning-based multiparametric MRI radiomics for predicting poor responders after neoadjuvant chemoradiotherapy in rectal Cancer patients
BACKGROUND: The purpose of this study was to investigate and validate multiparametric magnetic resonance imaging (MRI)-based machine learning classifiers for early identification of poor responders after neoadjuvant chemoradiotherapy (nCRT) in patients with locally advanced rectal cancer (LARC). MET...
Autores principales: | Wang, Jia, Chen, Jingjing, Zhou, Ruizhi, Gao, Yuanxiang, Li, Jie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9017030/ https://www.ncbi.nlm.nih.gov/pubmed/35439946 http://dx.doi.org/10.1186/s12885-022-09518-z |
Ejemplares similares
-
CT radiomics identifying non‐responders to neoadjuvant chemoradiotherapy among patients with locally advanced rectal cancer
por: Zhang, Zinan, et al.
Publicado: (2022) -
MRI-Based Radiomics Predicts Tumor Response to Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer
por: Yi, Xiaoping, et al.
Publicado: (2019) -
Preoperative Prediction of Microsatellite Instability in Rectal Cancer Using Five Machine Learning Algorithms Based on Multiparametric MRI Radiomics
por: Zhang, Yang, et al.
Publicado: (2023) -
Evaluating treatment response to neoadjuvant chemoradiotherapy in rectal cancer using various MRI-based radiomics models
por: Li, Zhihui, et al.
Publicado: (2021) -
Predicting Treatment Response to Neoadjuvant Chemoradiotherapy in Rectal Mucinous Adenocarcinoma Using an MRI-Based Radiomics Nomogram
por: Li, Zhihui, et al.
Publicado: (2021)