Cargando…
A weakly supervised deep learning approach for label-free imaging flow-cytometry-based blood diagnostics
The application of machine learning approaches to imaging flow cytometry (IFC) data has the potential to transform the diagnosis of hematological diseases. However, the need for manually labeled single-cell images for machine learning model training has severely limited its clinical application. To...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9017143/ https://www.ncbi.nlm.nih.gov/pubmed/35474892 http://dx.doi.org/10.1016/j.crmeth.2021.100094 |
Sumario: | The application of machine learning approaches to imaging flow cytometry (IFC) data has the potential to transform the diagnosis of hematological diseases. However, the need for manually labeled single-cell images for machine learning model training has severely limited its clinical application. To address this, we present iCellCnn, a weakly supervised deep learning approach for label-free IFC-based blood diagnostics. We demonstrate the capability of iCellCnn to achieve diagnosis of Sézary syndrome (SS) from patient samples on the basis of bright-field IFC images of T cells obtained after fluorescence-activated cell sorting of human peripheral blood mononuclear cell specimens. With a sample size of four healthy donors and five SS patients, iCellCnn achieved a 100% classification accuracy. As iCellCnn is not restricted to the diagnosis of SS, we expect such weakly supervised approaches to tap the diagnostic potential of IFC by providing automatic data-driven diagnosis of diseases with so-far unknown morphological manifestations. |
---|