Cargando…
A Bayesian factorization method to recover single-cell RNA sequencing data
Single-cell RNA sequencing (scRNA-seq) offers opportunities to study gene expression of tens of thousands of single cells simultaneously, to investigate cell-to-cell variation, and to reconstruct cell-type-specific gene regulatory networks. Recovering dropout events in a sparse gene expression matri...
Autores principales: | Wen, Zi-Hang, Langsam, Jeremy L., Zhang, Lu, Shen, Wenjun, Zhou, Xin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9017157/ https://www.ncbi.nlm.nih.gov/pubmed/35474868 http://dx.doi.org/10.1016/j.crmeth.2021.100133 |
Ejemplares similares
-
Bayesian gamma-negative binomial modeling of single-cell RNA sequencing data
por: Dadaneh, Siamak Zamani, et al.
Publicado: (2020) -
Data structures using C and C++
por: Langsam, Yedidyah, 1952-
Publicado: (1996) -
A sparse Bayesian factor model for the construction of gene co-expression networks from single-cell RNA sequencing count data
por: Sekula, Michael, et al.
Publicado: (2020) -
A new bioinformatics tool to recover missing gene expression in single-cell RNA sequencing data
por: Li, Jingyi Jessica
Publicado: (2020) -
BASiCS: Bayesian Analysis of Single-Cell Sequencing Data
por: Vallejos, Catalina A., et al.
Publicado: (2015)