Cargando…
A deep-learning toolkit for visualization and interpretation of segmented medical images
Generalizability of deep-learning (DL) model performance is not well understood and uses anecdotal assumptions for increasing training data to improve segmentation of medical images. We report statistical methods for visual interpretation of DL models trained using ImageNet initialization with natur...
Autores principales: | Ghosal, Sambuddha, Shah, Pratik |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9017181/ https://www.ncbi.nlm.nih.gov/pubmed/35474999 http://dx.doi.org/10.1016/j.crmeth.2021.100107 |
Ejemplares similares
-
Interpretation and Visualization Techniques for Deep Learning Models in Medical Imaging
por: Huff, Daniel T., et al.
Publicado: (2021) -
Toolkits and Libraries for Deep Learning
por: Erickson, Bradley J., et al.
Publicado: (2017) -
Variability and reproducibility in deep learning for medical image segmentation
por: Renard, Félix, et al.
Publicado: (2020) -
Spine Medical Image Segmentation Based on Deep Learning
por: Zhang, Qingfeng, et al.
Publicado: (2021) -
Deep Learning Application for Analyzing of Constituents and Their Correlations in the Interpretations of Medical Images
por: Ursuleanu, Tudor Florin, et al.
Publicado: (2021)