Cargando…
A mixture-of-experts deep generative model for integrated analysis of single-cell multiomics data
The recent development of single-cell multiomics analysis has enabled simultaneous detection of multiple traits at the single-cell level, providing deeper insights into cellular phenotypes and functions in diverse tissues. However, currently, it is challenging to infer the joint representations and...
Autores principales: | Minoura, Kodai, Abe, Ko, Nam, Hyunha, Nishikawa, Hiroyoshi, Shimamura, Teppei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9017195/ https://www.ncbi.nlm.nih.gov/pubmed/35474667 http://dx.doi.org/10.1016/j.crmeth.2021.100071 |
Ejemplares similares
-
Model-based clustering for flow and mass cytometry data with clinical information
por: Abe, Ko, et al.
Publicado: (2020) -
Model-based cell clustering and population tracking for time-series flow cytometry data
por: Minoura, Kodai, et al.
Publicado: (2019) -
CYBERTRACK2.0: zero-inflated model-based cell clustering and population tracking method for longitudinal mass cytometry data
por: Minoura, Kodai, et al.
Publicado: (2020) -
ENIGMA: an enterotype-like unigram mixture model for microbial association analysis
por: Abe, Ko, et al.
Publicado: (2019) -
Efficient Generation of Paired Single‐Cell Multiomics Profiles by Deep Learning
por: Lan, Meng, et al.
Publicado: (2023)