Cargando…
Role of miR-584-5p in Lipopolysaccharide-Stimulated Human Bronchial Epithelial Cell Inflammation and Apoptosis
Acute lung injury (ALI)/acute respiratory distress syndrome is a common clinical syndrome characterized by respiratory failure. MicroRNAs (miRNAs) are closely related to ALI and acute respiratory distress syndrome. TargetScan software analysis showed that miR-584-5p can bind to the 3ʹ noncoding regi...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9017489/ https://www.ncbi.nlm.nih.gov/pubmed/35449817 http://dx.doi.org/10.1155/2022/2408682 |
Sumario: | Acute lung injury (ALI)/acute respiratory distress syndrome is a common clinical syndrome characterized by respiratory failure. MicroRNAs (miRNAs) are closely related to ALI and acute respiratory distress syndrome. TargetScan software analysis showed that miR-584-5p can bind to the 3ʹ noncoding region of TLR4, which is involved in the occurrence and development of ALI, thereby affecting the inflammatory pathway and inflammation development. Thus, we aimed to determine whether miR-584-5p affects ALI. Human bronchial epithelial (16-HBE) cells were transfected with miR-584-5p mimics or inhibitors and then stimulated with lipopolysaccharide (LPS).The cell viability, apoptosis, release of proinflammatory factors, mTOR, and NF-κB pathway protein expression were evaluated respectively. Mimic584 increased, whereas inhibitor584 decreased, LPS-stimulated inflammation. The protein expression of inflammatory factors was significantly increased in 16-HBE cells in the mimic584 + LPS group and decreased in the inhibitor584 + LPS group. Mimic584 activated mTOR and the NF-κB-related proteins P65 and p-p65, whereas inhibitor584 inactivated the proteins in 16-HBE cells. Overexpression of miR-584 significantly promoted apoptosis in LPS-stimulated 16-HBE cells. There were no differences in the proliferation and cell cycle of LPS-stimulated 16-HBE cells regardless of mimic584 or inhibitor584 transfection. Collectively, we demonstrated that inhibitor584 can alleviate ALI-induced expression of inflammatory factors via mTOR signaling and the NF-κB pathway. In conclusion, we found that inhibitor584 transfection could be a potential therapeutic strategy for ALI. |
---|