Cargando…
Identifying Mobile Sensing Indicators of Stress-Resilience
Resident physicians (residents) experiencing prolonged workplace stress are at risk of developing mental health symptoms. Creating novel, unobtrusive measures of resilience would provide an accessible approach to evaluate symptom susceptibility without the perceived stigma of formal mental health as...
Autores principales: | ADLER, DANIEL A., TSENG, VINCENT W.-S., QI, GENGMO, SCARPA, JOSEPH, SEN, SRIJAN, CHOUDHURY, TANZEEM |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9017954/ https://www.ncbi.nlm.nih.gov/pubmed/35445162 http://dx.doi.org/10.1145/3463528 |
Ejemplares similares
-
Machine learning for passive mental health symptom prediction: Generalization across different longitudinal mobile sensing studies
por: Adler, Daniel A., et al.
Publicado: (2022) -
Talking Less during Social Interactions Predicts Enjoyment: A Mobile Sensing Pilot Study
por: Sandstrom, Gillian M., et al.
Publicado: (2016) -
Predicting Early Warning Signs of Psychotic Relapse From Passive Sensing Data: An Approach Using Encoder-Decoder Neural Networks
por: Adler, Daniel A, et al.
Publicado: (2020) -
Genomic Prediction of Depression Risk and Resilience Under Stress
por: Fang, Yu, et al.
Publicado: (2019) -
Understanding Mental Health Clinicians’ Perceptions and Concerns Regarding Using Passive Patient-Generated Health Data for Clinical Decision-Making: Qualitative Semistructured Interview Study
por: Nghiem, Jodie, et al.
Publicado: (2023)