Cargando…
Lower Bounds on Anderson-Localised Eigenfunctions on a Strip
It is known that the eigenfunctions of a random Schrödinger operator on a strip decay exponentially, and that the rate of decay is not slower than prescribed by the slowest Lyapunov exponent. A variery of heuristic arguments suggest that no eigenfunction can decay faster than at this rate. We make a...
Autores principales: | Goldsheid, Ilya, Sodin, Sasha |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9018665/ https://www.ncbi.nlm.nih.gov/pubmed/35529770 http://dx.doi.org/10.1007/s00220-022-04346-5 |
Ejemplares similares
-
Pointwise Bounds for Joint Eigenfunctions of Quantum Completely Integrable Systems
por: Galkowski, Jeffrey, et al.
Publicado: (2020) -
Anderson localisation in steady states of microcavity polaritons
por: Sturges, Thomas J., et al.
Publicado: (2019) -
Observation of two-dimensional Anderson localisation of ultracold atoms
por: White, Donald H., et al.
Publicado: (2020) -
Expansions in eigenfunctions of selfadjoint operators
por: Berezanskiĭ, Ju M
Publicado: (1968) -
Spin eigenfunctions: construction and use
por: Pauncz, Ruben
Publicado: (1979)