Cargando…

Modular Structure of the Weyl Algebra

We study the modular Hamiltonian associated with a Gaussian state on the Weyl algebra. We obtain necessary/sufficient criteria for the local equivalence of Gaussian states, independently of the classical results by Araki and Yamagami, Van Daele, Holevo. We also present a criterion for a Bogoliubov a...

Descripción completa

Detalles Bibliográficos
Autor principal: Longo, Roberto
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9018671/
https://www.ncbi.nlm.nih.gov/pubmed/35529771
http://dx.doi.org/10.1007/s00220-022-04344-7
Descripción
Sumario:We study the modular Hamiltonian associated with a Gaussian state on the Weyl algebra. We obtain necessary/sufficient criteria for the local equivalence of Gaussian states, independently of the classical results by Araki and Yamagami, Van Daele, Holevo. We also present a criterion for a Bogoliubov automorphism to be weakly inner in the GNS representation. The main application of our analysis is the description of the vacuum modular Hamiltonian associated with a time-zero interval in the scalar, massive, free QFT in two spacetime dimensions, thus complementing the recent results in higher space dimensions (Longo and Morsella in The massive modular Hamiltonian. arXiv:2012.00565). In particular, we have the formula for the local entropy of a one-dimensional Klein–Gordon wave packet and Araki’s vacuum relative entropy of a coherent state on a double cone von Neumann algebra. Besides, we derive the type [Formula: see text] factor property. Incidentally, we run across certain positive selfadjoint extensions of the Laplacian, with outer boundary conditions, seemingly not considered so far.