Cargando…
The neural coding framework for learning generative models
Neural generative models can be used to learn complex probability distributions from data, to sample from them, and to produce probability density estimates. We propose a computational framework for developing neural generative models inspired by the theory of predictive processing in the brain. Acc...
Autores principales: | Ororbia, Alexander, Kifer, Daniel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9018730/ https://www.ncbi.nlm.nih.gov/pubmed/35440589 http://dx.doi.org/10.1038/s41467-022-29632-7 |
Ejemplares similares
-
A neural active inference model of perceptual-motor learning
por: Yang, Zhizhuo, et al.
Publicado: (2023) -
GeNN: a code generation framework for accelerated brain simulations
por: Yavuz, Esin, et al.
Publicado: (2016) -
A Physics-Informed Automatic Neural Network Generation Framework for Emerging Device Modeling
por: Guo, Guangxin, et al.
Publicado: (2023) -
Using a physics-informed neural network and fault zone acoustic monitoring to predict lab earthquakes
por: Borate, Prabhav, et al.
Publicado: (2023) -
Dynamic Alignment Models for Neural Coding
por: Kollmorgen, Sepp, et al.
Publicado: (2014)