Cargando…

A fully automatic AI system for tooth and alveolar bone segmentation from cone-beam CT images

Accurate delineation of individual teeth and alveolar bones from dental cone-beam CT (CBCT) images is an essential step in digital dentistry for precision dental healthcare. In this paper, we present an AI system for efficient, precise, and fully automatic segmentation of real-patient CBCT images. O...

Descripción completa

Detalles Bibliográficos
Autores principales: Cui, Zhiming, Fang, Yu, Mei, Lanzhuju, Zhang, Bojun, Yu, Bo, Liu, Jiameng, Jiang, Caiwen, Sun, Yuhang, Ma, Lei, Huang, Jiawei, Liu, Yang, Zhao, Yue, Lian, Chunfeng, Ding, Zhongxiang, Zhu, Min, Shen, Dinggang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9018763/
https://www.ncbi.nlm.nih.gov/pubmed/35440592
http://dx.doi.org/10.1038/s41467-022-29637-2
_version_ 1784689098931306496
author Cui, Zhiming
Fang, Yu
Mei, Lanzhuju
Zhang, Bojun
Yu, Bo
Liu, Jiameng
Jiang, Caiwen
Sun, Yuhang
Ma, Lei
Huang, Jiawei
Liu, Yang
Zhao, Yue
Lian, Chunfeng
Ding, Zhongxiang
Zhu, Min
Shen, Dinggang
author_facet Cui, Zhiming
Fang, Yu
Mei, Lanzhuju
Zhang, Bojun
Yu, Bo
Liu, Jiameng
Jiang, Caiwen
Sun, Yuhang
Ma, Lei
Huang, Jiawei
Liu, Yang
Zhao, Yue
Lian, Chunfeng
Ding, Zhongxiang
Zhu, Min
Shen, Dinggang
author_sort Cui, Zhiming
collection PubMed
description Accurate delineation of individual teeth and alveolar bones from dental cone-beam CT (CBCT) images is an essential step in digital dentistry for precision dental healthcare. In this paper, we present an AI system for efficient, precise, and fully automatic segmentation of real-patient CBCT images. Our AI system is evaluated on the largest dataset so far, i.e., using a dataset of 4,215 patients (with 4,938 CBCT scans) from 15 different centers. This fully automatic AI system achieves a segmentation accuracy comparable to experienced radiologists (e.g., 0.5% improvement in terms of average Dice similarity coefficient), while significant improvement in efficiency (i.e., 500 times faster). In addition, it consistently obtains accurate results on the challenging cases with variable dental abnormalities, with the average Dice scores of 91.5% and 93.0% for tooth and alveolar bone segmentation. These results demonstrate its potential as a powerful system to boost clinical workflows of digital dentistry.
format Online
Article
Text
id pubmed-9018763
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-90187632022-04-28 A fully automatic AI system for tooth and alveolar bone segmentation from cone-beam CT images Cui, Zhiming Fang, Yu Mei, Lanzhuju Zhang, Bojun Yu, Bo Liu, Jiameng Jiang, Caiwen Sun, Yuhang Ma, Lei Huang, Jiawei Liu, Yang Zhao, Yue Lian, Chunfeng Ding, Zhongxiang Zhu, Min Shen, Dinggang Nat Commun Article Accurate delineation of individual teeth and alveolar bones from dental cone-beam CT (CBCT) images is an essential step in digital dentistry for precision dental healthcare. In this paper, we present an AI system for efficient, precise, and fully automatic segmentation of real-patient CBCT images. Our AI system is evaluated on the largest dataset so far, i.e., using a dataset of 4,215 patients (with 4,938 CBCT scans) from 15 different centers. This fully automatic AI system achieves a segmentation accuracy comparable to experienced radiologists (e.g., 0.5% improvement in terms of average Dice similarity coefficient), while significant improvement in efficiency (i.e., 500 times faster). In addition, it consistently obtains accurate results on the challenging cases with variable dental abnormalities, with the average Dice scores of 91.5% and 93.0% for tooth and alveolar bone segmentation. These results demonstrate its potential as a powerful system to boost clinical workflows of digital dentistry. Nature Publishing Group UK 2022-04-19 /pmc/articles/PMC9018763/ /pubmed/35440592 http://dx.doi.org/10.1038/s41467-022-29637-2 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Cui, Zhiming
Fang, Yu
Mei, Lanzhuju
Zhang, Bojun
Yu, Bo
Liu, Jiameng
Jiang, Caiwen
Sun, Yuhang
Ma, Lei
Huang, Jiawei
Liu, Yang
Zhao, Yue
Lian, Chunfeng
Ding, Zhongxiang
Zhu, Min
Shen, Dinggang
A fully automatic AI system for tooth and alveolar bone segmentation from cone-beam CT images
title A fully automatic AI system for tooth and alveolar bone segmentation from cone-beam CT images
title_full A fully automatic AI system for tooth and alveolar bone segmentation from cone-beam CT images
title_fullStr A fully automatic AI system for tooth and alveolar bone segmentation from cone-beam CT images
title_full_unstemmed A fully automatic AI system for tooth and alveolar bone segmentation from cone-beam CT images
title_short A fully automatic AI system for tooth and alveolar bone segmentation from cone-beam CT images
title_sort fully automatic ai system for tooth and alveolar bone segmentation from cone-beam ct images
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9018763/
https://www.ncbi.nlm.nih.gov/pubmed/35440592
http://dx.doi.org/10.1038/s41467-022-29637-2
work_keys_str_mv AT cuizhiming afullyautomaticaisystemfortoothandalveolarbonesegmentationfromconebeamctimages
AT fangyu afullyautomaticaisystemfortoothandalveolarbonesegmentationfromconebeamctimages
AT meilanzhuju afullyautomaticaisystemfortoothandalveolarbonesegmentationfromconebeamctimages
AT zhangbojun afullyautomaticaisystemfortoothandalveolarbonesegmentationfromconebeamctimages
AT yubo afullyautomaticaisystemfortoothandalveolarbonesegmentationfromconebeamctimages
AT liujiameng afullyautomaticaisystemfortoothandalveolarbonesegmentationfromconebeamctimages
AT jiangcaiwen afullyautomaticaisystemfortoothandalveolarbonesegmentationfromconebeamctimages
AT sunyuhang afullyautomaticaisystemfortoothandalveolarbonesegmentationfromconebeamctimages
AT malei afullyautomaticaisystemfortoothandalveolarbonesegmentationfromconebeamctimages
AT huangjiawei afullyautomaticaisystemfortoothandalveolarbonesegmentationfromconebeamctimages
AT liuyang afullyautomaticaisystemfortoothandalveolarbonesegmentationfromconebeamctimages
AT zhaoyue afullyautomaticaisystemfortoothandalveolarbonesegmentationfromconebeamctimages
AT lianchunfeng afullyautomaticaisystemfortoothandalveolarbonesegmentationfromconebeamctimages
AT dingzhongxiang afullyautomaticaisystemfortoothandalveolarbonesegmentationfromconebeamctimages
AT zhumin afullyautomaticaisystemfortoothandalveolarbonesegmentationfromconebeamctimages
AT shendinggang afullyautomaticaisystemfortoothandalveolarbonesegmentationfromconebeamctimages
AT cuizhiming fullyautomaticaisystemfortoothandalveolarbonesegmentationfromconebeamctimages
AT fangyu fullyautomaticaisystemfortoothandalveolarbonesegmentationfromconebeamctimages
AT meilanzhuju fullyautomaticaisystemfortoothandalveolarbonesegmentationfromconebeamctimages
AT zhangbojun fullyautomaticaisystemfortoothandalveolarbonesegmentationfromconebeamctimages
AT yubo fullyautomaticaisystemfortoothandalveolarbonesegmentationfromconebeamctimages
AT liujiameng fullyautomaticaisystemfortoothandalveolarbonesegmentationfromconebeamctimages
AT jiangcaiwen fullyautomaticaisystemfortoothandalveolarbonesegmentationfromconebeamctimages
AT sunyuhang fullyautomaticaisystemfortoothandalveolarbonesegmentationfromconebeamctimages
AT malei fullyautomaticaisystemfortoothandalveolarbonesegmentationfromconebeamctimages
AT huangjiawei fullyautomaticaisystemfortoothandalveolarbonesegmentationfromconebeamctimages
AT liuyang fullyautomaticaisystemfortoothandalveolarbonesegmentationfromconebeamctimages
AT zhaoyue fullyautomaticaisystemfortoothandalveolarbonesegmentationfromconebeamctimages
AT lianchunfeng fullyautomaticaisystemfortoothandalveolarbonesegmentationfromconebeamctimages
AT dingzhongxiang fullyautomaticaisystemfortoothandalveolarbonesegmentationfromconebeamctimages
AT zhumin fullyautomaticaisystemfortoothandalveolarbonesegmentationfromconebeamctimages
AT shendinggang fullyautomaticaisystemfortoothandalveolarbonesegmentationfromconebeamctimages