Cargando…

In silico targeting of red complex bacteria virulence factors of periodontitis with β-defensin 1

BACKGROUND: Periodontitis is a multi-factorial infection with red complex bacteria playing a crucial role in the pathogenesis. As bacteria are tending to develop resistance against conventional antibiotics, new treatment modalities need to be developed. Antimicrobial peptides (AMPs) are potential to...

Descripción completa

Detalles Bibliográficos
Autores principales: Venkata Subbiah, Harini, Ramesh Babu, Polani, Subbiah, Usha
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9019007/
https://www.ncbi.nlm.nih.gov/pubmed/35438383
http://dx.doi.org/10.1186/s43141-022-00342-3
Descripción
Sumario:BACKGROUND: Periodontitis is a multi-factorial infection with red complex bacteria playing a crucial role in the pathogenesis. As bacteria are tending to develop resistance against conventional antibiotics, new treatment modalities need to be developed. Antimicrobial peptides (AMPs) are potential tools for drug development and are gaining widespread interest. β-defensin 1 is an important AMP and forms the first-line host defense mechanism. The present study analyzed the structure and molecular docking of β-defensin 1 with the virulence factors of red complex bacteria of periodontitis. The physico-chemical properties of β-defensin 1 were determined by various online tools such as ProtParam, ProteinPredict, ToxinPred, and BioPep web servers. The structure of β-defensin 1was predicted by the SWISS-MODEL web server and the structure was evaluated by different web tools. The structure of lipopolysaccharide of Porphyromonas gingivalis was drawn using Chem3D ultra 11.0 software. The structure of important protein virulence factors of red complex bacteria of periodontitis was determined by the SWISS-MODEL web server. The interaction study between β-defensin 1 and virulence factors was carried out by molecular docking using Auto dock version 4.0 software and pyDock WEB server. RESULTS: Using online tools, β-defensin 1 was predicted to be stable and non-toxic. SWISS-MODEL web server predicted Ramachandran score as 94.12% and clash score 0.0 for β-defensin 1. Auto dock version 4.0 software and pyDock WEB server analyzed the interaction to have low binding energies and hydrogen bonds were formed between the peptide and virulence factors. CONCLUSION: β-defensin 1 was found to have good binding interaction with the disease-causing factors of red complex bacteria of periodontitis and in turn could play a role in reducing the severity of infection. β-defensin 1 could be a potential candidate for drug development for periodontitis.