Cargando…

CO(2) signaling mediates neurovascular coupling in the cerebral cortex

Neurovascular coupling is a fundamental brain mechanism that regulates local cerebral blood flow (CBF) in response to changes in neuronal activity. Functional imaging techniques are commonly used to record these changes in CBF as a proxy of neuronal activity to study the human brain. However, the me...

Descripción completa

Detalles Bibliográficos
Autores principales: Hosford, Patrick S., Wells, Jack A., Nizari, Shereen, Christie, Isabel N., Theparambil, Shefeeq M., Castro, Pablo A., Hadjihambi, Anna, Barros, L. Felipe, Ruminot, Iván, Lythgoe, Mark F., Gourine, Alexander V.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9019094/
https://www.ncbi.nlm.nih.gov/pubmed/35440557
http://dx.doi.org/10.1038/s41467-022-29622-9
_version_ 1784689175108255744
author Hosford, Patrick S.
Wells, Jack A.
Nizari, Shereen
Christie, Isabel N.
Theparambil, Shefeeq M.
Castro, Pablo A.
Hadjihambi, Anna
Barros, L. Felipe
Ruminot, Iván
Lythgoe, Mark F.
Gourine, Alexander V.
author_facet Hosford, Patrick S.
Wells, Jack A.
Nizari, Shereen
Christie, Isabel N.
Theparambil, Shefeeq M.
Castro, Pablo A.
Hadjihambi, Anna
Barros, L. Felipe
Ruminot, Iván
Lythgoe, Mark F.
Gourine, Alexander V.
author_sort Hosford, Patrick S.
collection PubMed
description Neurovascular coupling is a fundamental brain mechanism that regulates local cerebral blood flow (CBF) in response to changes in neuronal activity. Functional imaging techniques are commonly used to record these changes in CBF as a proxy of neuronal activity to study the human brain. However, the mechanisms of neurovascular coupling remain incompletely understood. Here we show in experimental animal models (laboratory rats and mice) that the neuronal activity-dependent increases in local CBF in the somatosensory cortex are prevented by saturation of the CO(2)-sensitive vasodilatory brain mechanism with surplus of exogenous CO(2) or disruption of brain CO(2)/HCO(3)(−) transport by genetic knockdown of electrogenic sodium-bicarbonate cotransporter 1 (NBCe1) expression in astrocytes. A systematic review of the literature data shows that CO(2) and increased neuronal activity recruit the same vasodilatory signaling pathways. These results and analysis suggest that CO(2) mediates signaling between neurons and the cerebral vasculature to regulate brain blood flow in accord with changes in the neuronal activity.
format Online
Article
Text
id pubmed-9019094
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-90190942022-04-28 CO(2) signaling mediates neurovascular coupling in the cerebral cortex Hosford, Patrick S. Wells, Jack A. Nizari, Shereen Christie, Isabel N. Theparambil, Shefeeq M. Castro, Pablo A. Hadjihambi, Anna Barros, L. Felipe Ruminot, Iván Lythgoe, Mark F. Gourine, Alexander V. Nat Commun Article Neurovascular coupling is a fundamental brain mechanism that regulates local cerebral blood flow (CBF) in response to changes in neuronal activity. Functional imaging techniques are commonly used to record these changes in CBF as a proxy of neuronal activity to study the human brain. However, the mechanisms of neurovascular coupling remain incompletely understood. Here we show in experimental animal models (laboratory rats and mice) that the neuronal activity-dependent increases in local CBF in the somatosensory cortex are prevented by saturation of the CO(2)-sensitive vasodilatory brain mechanism with surplus of exogenous CO(2) or disruption of brain CO(2)/HCO(3)(−) transport by genetic knockdown of electrogenic sodium-bicarbonate cotransporter 1 (NBCe1) expression in astrocytes. A systematic review of the literature data shows that CO(2) and increased neuronal activity recruit the same vasodilatory signaling pathways. These results and analysis suggest that CO(2) mediates signaling between neurons and the cerebral vasculature to regulate brain blood flow in accord with changes in the neuronal activity. Nature Publishing Group UK 2022-04-19 /pmc/articles/PMC9019094/ /pubmed/35440557 http://dx.doi.org/10.1038/s41467-022-29622-9 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Hosford, Patrick S.
Wells, Jack A.
Nizari, Shereen
Christie, Isabel N.
Theparambil, Shefeeq M.
Castro, Pablo A.
Hadjihambi, Anna
Barros, L. Felipe
Ruminot, Iván
Lythgoe, Mark F.
Gourine, Alexander V.
CO(2) signaling mediates neurovascular coupling in the cerebral cortex
title CO(2) signaling mediates neurovascular coupling in the cerebral cortex
title_full CO(2) signaling mediates neurovascular coupling in the cerebral cortex
title_fullStr CO(2) signaling mediates neurovascular coupling in the cerebral cortex
title_full_unstemmed CO(2) signaling mediates neurovascular coupling in the cerebral cortex
title_short CO(2) signaling mediates neurovascular coupling in the cerebral cortex
title_sort co(2) signaling mediates neurovascular coupling in the cerebral cortex
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9019094/
https://www.ncbi.nlm.nih.gov/pubmed/35440557
http://dx.doi.org/10.1038/s41467-022-29622-9
work_keys_str_mv AT hosfordpatricks co2signalingmediatesneurovascularcouplinginthecerebralcortex
AT wellsjacka co2signalingmediatesneurovascularcouplinginthecerebralcortex
AT nizarishereen co2signalingmediatesneurovascularcouplinginthecerebralcortex
AT christieisabeln co2signalingmediatesneurovascularcouplinginthecerebralcortex
AT theparambilshefeeqm co2signalingmediatesneurovascularcouplinginthecerebralcortex
AT castropabloa co2signalingmediatesneurovascularcouplinginthecerebralcortex
AT hadjihambianna co2signalingmediatesneurovascularcouplinginthecerebralcortex
AT barroslfelipe co2signalingmediatesneurovascularcouplinginthecerebralcortex
AT ruminotivan co2signalingmediatesneurovascularcouplinginthecerebralcortex
AT lythgoemarkf co2signalingmediatesneurovascularcouplinginthecerebralcortex
AT gourinealexanderv co2signalingmediatesneurovascularcouplinginthecerebralcortex