Cargando…
Argyrodite-type advanced lithium conductors and transport mechanisms beyond paddle-wheel effect
Development of next-generation solid-state Li-ion batteries requires not only electrolytes with high room-temperature (RT) ionic conductivities but also a fundamental understanding of the ionic transport in solids. In spite of considerable work, only a few lithium conductors are known with the highe...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9019101/ https://www.ncbi.nlm.nih.gov/pubmed/35440663 http://dx.doi.org/10.1038/s41467-022-29769-5 |
Sumario: | Development of next-generation solid-state Li-ion batteries requires not only electrolytes with high room-temperature (RT) ionic conductivities but also a fundamental understanding of the ionic transport in solids. In spite of considerable work, only a few lithium conductors are known with the highest RT ionic conductivities ~ 0.01 S/cm and the lowest activation energies ~0.2 eV. New design strategy and novel ionic conduction mechanism are needed to expand the pool of high-performance lithium conductors as well as achieve even higher RT ionic conductivities. Here, we theoretically show that lithium conductors with RT ionic conductivity over 0.1 S/cm and low activation energies ~ 0.1 eV can be achieved by incorporating cluster-dynamics into an argyrodite structure. The extraordinary superionic metrics are supported by conduction mechanism characterized as a relay between local and long-range ionic diffusions, as well as correlational dynamics beyond the paddle-wheel effect. |
---|