Cargando…

Cloud Computing Load Balancing Mechanism Taking into Account Load Balancing Ant Colony Optimization Algorithm

The networking scale and traffic have exploded. At the same time, the rapid development of virtualization and cloud computing technologies not only poses a considerable challenge to the endurance of the network, but also causes more and more problems to the traditional network architecture with IP a...

Descripción completa

Detalles Bibliográficos
Autor principal: He, Jing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9019354/
https://www.ncbi.nlm.nih.gov/pubmed/35463290
http://dx.doi.org/10.1155/2022/3120883
Descripción
Sumario:The networking scale and traffic have exploded. At the same time, the rapid development of virtualization and cloud computing technologies not only poses a considerable challenge to the endurance of the network, but also causes more and more problems to the traditional network architecture with IP as the core. Cloud computing is a supercomputing model based on the Internet. With the rapid growth of network access and data traffic, the processing power and computing intensity will also increase, and a single server cannot afford the increase in business. In order to reduce network pressure and improve computing efficiency, load balancing for network computing is particularly important. This paper uses ant colony algorithm to design cloud computing load balance. The ant colony algorithm runs in the controller. According to the real-time network load situation provided by the controller, it calculates the link with the smallest load and provides a dynamic data stream forwarding strategy. The result of the experiments shows that the load-balanced ACO optimized technique can significantly provide an improved computational response. In the ACO algorithm, the average response time is about 30% lower than that in other algorithms. This shows that the use of the ant colony algorithm achieves a good optimization effect.