Cargando…

Novel Analysis Identifying Functional Connectivity Patterns Associated with Posttraumatic Stress Disorder

Posttraumatic stress disorder (PTSD) is a prevalent psychiatric disorder that can result from experiencing traumatic events. Accurate diagnosis and optimal treatment strategies can be difficult to achieve, due to the heterogeneous etiology and symptomology of PTSD, and overlap with other psychiatric...

Descripción completa

Detalles Bibliográficos
Autores principales: Wright,, Natalie, Patel,, Ronak, Chaulk,, Sarah J., Alcolado,, Gillian, Podnar,, David, Mota,, Natalie, Monson,, Candice M., Girard,, Todd A., Ko,, Ji Hyun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE Publications 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9019376/
https://www.ncbi.nlm.nih.gov/pubmed/35465401
http://dx.doi.org/10.1177/24705470221092428
Descripción
Sumario:Posttraumatic stress disorder (PTSD) is a prevalent psychiatric disorder that can result from experiencing traumatic events. Accurate diagnosis and optimal treatment strategies can be difficult to achieve, due to the heterogeneous etiology and symptomology of PTSD, and overlap with other psychiatric disorders. Advancing our understanding of PTSD pathophysiology is therefore critical. While functional connectivity alterations have shown promise for elucidating the neurobiological mechanisms of PTSD, previous findings have been inconsistent. Eleven patients with PTSD in our first cohort (PTSD-A) and 11 trauma-exposed controls (TEC) underwent functional magnetic resonance imaging. First, we investigated the intrinsic connectivity within known resting state networks (eg, default mode, salience, and central executive networks) previously implicated in functional abnormalities with PTSD symptoms. Second, the overall topology of network structure was compared between PTSD-A and TEC using graph theory. Finally, we used a novel combination of graph theory analysis and scaled subprofile modeling (SSM) to identify a disease-related, covarying pattern of brain network organization. No significant group differences were found in intrinsic connectivity of known resting state networks and graph theory metrics (clustering coefficients, characteristic path length, smallworldness, global and local efficiencies, and degree centrality). The graph theory/SSM analysis revealed a topographical pattern of altered degree centrality differentiating PTSD-A from TEC. This PTSD-related network pattern expression was additionally investigated in a separate cohort of 33 subjects who were scanned with a different MRI scanner (22 patients with PTSD or PTSD-B, and 11 healthy trauma-naïve controls or TNC). Across all participant groups, pattern expression scores were significantly lower in the TEC group, while PTSD-A, PTSD-B, and TNC subject profiles did not differ from each other. Expression level of the pattern was correlated with symptom severity in the PTSD-B group. This method offers potential in developing objective biomarkers associated with PTSD. Possible interpretations and clinical implications will be discussed.