Cargando…
MDST-DGCN: A Multilevel Dynamic Spatiotemporal Directed Graph Convolutional Network for Pedestrian Trajectory Prediction
Pedestrian trajectory prediction is an essential but challenging task. Social interactions between pedestrians have an immense impact on trajectories. A better way to model social interactions generally achieves a more accurate trajectory prediction. To comprehensively model the interactions between...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9019418/ https://www.ncbi.nlm.nih.gov/pubmed/35463224 http://dx.doi.org/10.1155/2022/4192367 |
Sumario: | Pedestrian trajectory prediction is an essential but challenging task. Social interactions between pedestrians have an immense impact on trajectories. A better way to model social interactions generally achieves a more accurate trajectory prediction. To comprehensively model the interactions between pedestrians, we propose a multilevel dynamic spatiotemporal digraph convolutional network (MDST-DGCN). It consists of three parts: a motion encoder to capture the pedestrians' specific motion features, a multilevel dynamic spatiotemporal directed graph encoder (MDST-DGEN) to capture the social interaction features of multiple levels and adaptively fuse them, and a motion decoder to produce the future trajectories. Experimental results on public datasets demonstrate that our model achieves state-of-the-art results in both long-term and short-term predictions for both high-density and low-density crowds. |
---|