Cargando…
MDST-DGCN: A Multilevel Dynamic Spatiotemporal Directed Graph Convolutional Network for Pedestrian Trajectory Prediction
Pedestrian trajectory prediction is an essential but challenging task. Social interactions between pedestrians have an immense impact on trajectories. A better way to model social interactions generally achieves a more accurate trajectory prediction. To comprehensively model the interactions between...
Autores principales: | Liu, Shaohua, Liu, Haibo, Wang, Yisu, Sun, Jingkai, Mao, Tianlu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9019418/ https://www.ncbi.nlm.nih.gov/pubmed/35463224 http://dx.doi.org/10.1155/2022/4192367 |
Ejemplares similares
-
Proposal for the ALEPH DST and MDST
por: Boucrot, J, et al.
Publicado: (1988) -
Multicomponent Spatial-Temporal Graph Attention Convolution Networks for Traffic Prediction with Spatially Sparse Data
por: Liu, Shaohua, et al.
Publicado: (2021) -
EGAT: Extended Graph Attention Network for Pedestrian Trajectory Prediction
por: Kong, Wei, et al.
Publicado: (2021) -
New Systolic Array Algorithms and VLSI Architectures for 1-D MDST †
por: Chiper, Doru Florin, et al.
Publicado: (2023) -
DGMP: Identifying Cancer Driver Genes by Jointing DGCN and MLP from Multi-omics Genomic Data
por: Zhang, Shao-Wu, et al.
Publicado: (2022)