Cargando…
Large-Scale Textual Datasets and Deep Learning for the Prediction of Depressed Symptoms
Millions of people worldwide suffer from depression. Assessing, treating, and preventing recurrence requires early detection of depressive symptoms as depression-related datasets expand and machine learning improves, intelligent approaches to detect depression in written material may emerge. This st...
Autores principales: | Chakraborty, Sudeshna, Mahdi, Hussain Falih, Ali Al-Abyadh, Mohammed Hasan, Pant, Kumud, Sharma, Aditi, Ahmadi, Fardin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9019419/ https://www.ncbi.nlm.nih.gov/pubmed/35463265 http://dx.doi.org/10.1155/2022/5731532 |
Ejemplares similares
-
Retracted: Large-Scale Textual Datasets and Deep Learning for the Prediction of Depressed Symptoms
por: Intelligence and Neuroscience, Computational
Publicado: (2023) -
Dataset for file fragment classification of textual file formats
por: Mansouri Hanis, Fatemeh, et al.
Publicado: (2019) -
A Computational Approach to Qualitative Analysis in Large Textual Datasets
por: Evans, Michael S.
Publicado: (2014) -
Analysing Hate Speech against Migrants and Women through Tweets Using Ensembled Deep Learning Model
por: Hasan, Asif, et al.
Publicado: (2022) -
COVID-19 and Media datasets: Period- and location-specific textual data mining
por: Roche, Mathieu
Publicado: (2020)