Cargando…
Application of unsupervised deep learning algorithms for identification of specific clusters of chronic cough patients from EMR data
BACKGROUND: Chronic cough affects approximately 10% of adults. The lack of ICD codes for chronic cough makes it challenging to apply supervised learning methods to predict the characteristics of chronic cough patients, thereby requiring the identification of chronic cough patients by other mechanism...
Autores principales: | Shao, Wei, Luo, Xiao, Zhang, Zuoyi, Han, Zhi, Chandrasekaran, Vasu, Turzhitsky, Vladimir, Bali, Vishal, Roberts, Anna R., Metzger, Megan, Baker, Jarod, La Rosa, Carmen, Weaver, Jessica, Dexter, Paul, Huang, Kun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9019947/ https://www.ncbi.nlm.nih.gov/pubmed/35439945 http://dx.doi.org/10.1186/s12859-022-04680-4 |
Ejemplares similares
-
Development of a natural language processing algorithm to detect chronic cough in electronic health records
por: Bali, Vishal, et al.
Publicado: (2022) -
An unsupervised neuromorphic clustering algorithm
por: Diamond, Alan, et al.
Publicado: (2019) -
Unsupervised ranking of clustering algorithms by INFOMAX
por: Sikdar, Sandipan, et al.
Publicado: (2020) -
Management of Chronic Cough in Adult Primary Care: A Qualitative Study
por: Gowan, Tayler M., et al.
Publicado: (2021) -
Health‐related experiences of adults with chronic cough: Empirical research mixed methods
por: Weiner, Michael, et al.
Publicado: (2023)