Cargando…
RODAN: a fully convolutional architecture for basecalling nanopore RNA sequencing data
BACKGROUND: Despite recent progress in basecalling of Oxford nanopore DNA sequencing data, its wide adoption is still being hampered by its relatively low accuracy compared to short read technologies. Furthermore, very little of the recent research was focused on basecalling of RNA data, which has d...
Autores principales: | Neumann, Don, Reddy, Anireddy S. N., Ben-Hur, Asa |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9020074/ https://www.ncbi.nlm.nih.gov/pubmed/35443610 http://dx.doi.org/10.1186/s12859-022-04686-y |
Ejemplares similares
-
Causalcall: Nanopore Basecalling Using a Temporal Convolutional Network
por: Zeng, Jingwen, et al.
Publicado: (2020) -
Comprehensive benchmark and architectural analysis of deep learning models for nanopore sequencing basecalling
por: Pagès-Gallego, Marc, et al.
Publicado: (2023) -
Nanocall: an open source basecaller for Oxford Nanopore sequencing data
por: David, Matei, et al.
Publicado: (2017) -
Basecalling Using Joint Raw and Event Nanopore Data Sequence-to-Sequence Processing
por: Napieralski, Adam, et al.
Publicado: (2022) -
Accelerated nanopore basecalling with SLOW5 data format
por: Samarakoon, Hiruna, et al.
Publicado: (2023)