Cargando…
Optical resolution of 1,16-dihydroxytetraphenylene by chiral gold(iii) complexation and its applications as chiral ligands in asymmetric catalysis
We report herein a novel approach involving optical resolution of (±)-1,16-dihydroxytetraphenylene (DHTP) by chiral gold(iii) complexation. This method features several key advantages, i.e., recyclability of chiral resolution reagents, feasibility of scaling up to gram quantities, and operational si...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9020179/ https://www.ncbi.nlm.nih.gov/pubmed/35656141 http://dx.doi.org/10.1039/d2sc00388k |
Sumario: | We report herein a novel approach involving optical resolution of (±)-1,16-dihydroxytetraphenylene (DHTP) by chiral gold(iii) complexation. This method features several key advantages, i.e., recyclability of chiral resolution reagents, feasibility of scaling up to gram quantities, and operational simplicity. On the basis of this method, which led to optically pure DHTP, a library of 2,15-diaryl (S)-DHTPs and several (S)-DHTP-derived phosphoramidite ligands were synthesized. Finally, the superior performance of a (S)-DHTP phosphoramidite ligand was demonstrated by efficient iridium-catalyzed asymmetric allylic alkynylation reactions. |
---|