Cargando…
A Machine Learning-Based Predictive Model for Predicting Lymph Node Metastasis in Patients With Ewing’s Sarcoma
OBJECTIVE: In order to provide reference for clinicians and bring convenience to clinical work, we seeked to develop and validate a risk prediction model for lymph node metastasis (LNM) of Ewing’s sarcoma (ES) based on machine learning (ML) algorithms. METHODS: Clinicopathological data of 923 ES pat...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9020377/ https://www.ncbi.nlm.nih.gov/pubmed/35463005 http://dx.doi.org/10.3389/fmed.2022.832108 |
_version_ | 1784689523919159296 |
---|---|
author | Li, Wenle Zhou, Qian Liu, Wencai Xu, Chan Tang, Zhi-Ri Dong, Shengtao Wang, Haosheng Li, Wanying Zhang, Kai Li, Rong Zhang, Wenshi Hu, Zhaohui Shibin, Su Liu, Qiang Kuang, Sirui Yin, Chengliang |
author_facet | Li, Wenle Zhou, Qian Liu, Wencai Xu, Chan Tang, Zhi-Ri Dong, Shengtao Wang, Haosheng Li, Wanying Zhang, Kai Li, Rong Zhang, Wenshi Hu, Zhaohui Shibin, Su Liu, Qiang Kuang, Sirui Yin, Chengliang |
author_sort | Li, Wenle |
collection | PubMed |
description | OBJECTIVE: In order to provide reference for clinicians and bring convenience to clinical work, we seeked to develop and validate a risk prediction model for lymph node metastasis (LNM) of Ewing’s sarcoma (ES) based on machine learning (ML) algorithms. METHODS: Clinicopathological data of 923 ES patients from the Surveillance, Epidemiology, and End Results (SEER) database and 51 ES patients from multi-center external validation set were retrospectively collected. We applied ML algorithms to establish a risk prediction model. Model performance was checked using 10-fold cross-validation in the training set and receiver operating characteristic (ROC) curve analysis in external validation set. After determining the best model, a web-based calculator was made to promote the clinical application. RESULTS: LNM was confirmed or unable to evaluate in 13.86% (135 out of 974) ES patients. In multivariate logistic regression, race, T stage, M stage and lung metastases were independent predictors for LNM in ES. Six prediction models were established using random forest (RF), naive Bayes classifier (NBC), decision tree (DT), xgboost (XGB), gradient boosting machine (GBM), logistic regression (LR). In 10-fold cross-validation, the average area under curve (AUC) ranked from 0.705 to 0.764. In ROC curve analysis, AUC ranged from 0.612 to 0.727. The performance of the RF model ranked best. Accordingly, a web-based calculator was developed (https://share.streamlit.io/liuwencai2/es_lnm/main/es_lnm.py). CONCLUSION: With the help of clinicopathological data, clinicians can better identify LNM in ES patients. Risk prediction models established in this study performed well, especially the RF model. |
format | Online Article Text |
id | pubmed-9020377 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-90203772022-04-21 A Machine Learning-Based Predictive Model for Predicting Lymph Node Metastasis in Patients With Ewing’s Sarcoma Li, Wenle Zhou, Qian Liu, Wencai Xu, Chan Tang, Zhi-Ri Dong, Shengtao Wang, Haosheng Li, Wanying Zhang, Kai Li, Rong Zhang, Wenshi Hu, Zhaohui Shibin, Su Liu, Qiang Kuang, Sirui Yin, Chengliang Front Med (Lausanne) Medicine OBJECTIVE: In order to provide reference for clinicians and bring convenience to clinical work, we seeked to develop and validate a risk prediction model for lymph node metastasis (LNM) of Ewing’s sarcoma (ES) based on machine learning (ML) algorithms. METHODS: Clinicopathological data of 923 ES patients from the Surveillance, Epidemiology, and End Results (SEER) database and 51 ES patients from multi-center external validation set were retrospectively collected. We applied ML algorithms to establish a risk prediction model. Model performance was checked using 10-fold cross-validation in the training set and receiver operating characteristic (ROC) curve analysis in external validation set. After determining the best model, a web-based calculator was made to promote the clinical application. RESULTS: LNM was confirmed or unable to evaluate in 13.86% (135 out of 974) ES patients. In multivariate logistic regression, race, T stage, M stage and lung metastases were independent predictors for LNM in ES. Six prediction models were established using random forest (RF), naive Bayes classifier (NBC), decision tree (DT), xgboost (XGB), gradient boosting machine (GBM), logistic regression (LR). In 10-fold cross-validation, the average area under curve (AUC) ranked from 0.705 to 0.764. In ROC curve analysis, AUC ranged from 0.612 to 0.727. The performance of the RF model ranked best. Accordingly, a web-based calculator was developed (https://share.streamlit.io/liuwencai2/es_lnm/main/es_lnm.py). CONCLUSION: With the help of clinicopathological data, clinicians can better identify LNM in ES patients. Risk prediction models established in this study performed well, especially the RF model. Frontiers Media S.A. 2022-04-06 /pmc/articles/PMC9020377/ /pubmed/35463005 http://dx.doi.org/10.3389/fmed.2022.832108 Text en Copyright © 2022 Li, Zhou, Liu, Xu, Tang, Dong, Wang, Li, Zhang, Li, Zhang, Hu, Shibin, Liu, Kuang and Yin. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Medicine Li, Wenle Zhou, Qian Liu, Wencai Xu, Chan Tang, Zhi-Ri Dong, Shengtao Wang, Haosheng Li, Wanying Zhang, Kai Li, Rong Zhang, Wenshi Hu, Zhaohui Shibin, Su Liu, Qiang Kuang, Sirui Yin, Chengliang A Machine Learning-Based Predictive Model for Predicting Lymph Node Metastasis in Patients With Ewing’s Sarcoma |
title | A Machine Learning-Based Predictive Model for Predicting Lymph Node Metastasis in Patients With Ewing’s Sarcoma |
title_full | A Machine Learning-Based Predictive Model for Predicting Lymph Node Metastasis in Patients With Ewing’s Sarcoma |
title_fullStr | A Machine Learning-Based Predictive Model for Predicting Lymph Node Metastasis in Patients With Ewing’s Sarcoma |
title_full_unstemmed | A Machine Learning-Based Predictive Model for Predicting Lymph Node Metastasis in Patients With Ewing’s Sarcoma |
title_short | A Machine Learning-Based Predictive Model for Predicting Lymph Node Metastasis in Patients With Ewing’s Sarcoma |
title_sort | machine learning-based predictive model for predicting lymph node metastasis in patients with ewing’s sarcoma |
topic | Medicine |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9020377/ https://www.ncbi.nlm.nih.gov/pubmed/35463005 http://dx.doi.org/10.3389/fmed.2022.832108 |
work_keys_str_mv | AT liwenle amachinelearningbasedpredictivemodelforpredictinglymphnodemetastasisinpatientswithewingssarcoma AT zhouqian amachinelearningbasedpredictivemodelforpredictinglymphnodemetastasisinpatientswithewingssarcoma AT liuwencai amachinelearningbasedpredictivemodelforpredictinglymphnodemetastasisinpatientswithewingssarcoma AT xuchan amachinelearningbasedpredictivemodelforpredictinglymphnodemetastasisinpatientswithewingssarcoma AT tangzhiri amachinelearningbasedpredictivemodelforpredictinglymphnodemetastasisinpatientswithewingssarcoma AT dongshengtao amachinelearningbasedpredictivemodelforpredictinglymphnodemetastasisinpatientswithewingssarcoma AT wanghaosheng amachinelearningbasedpredictivemodelforpredictinglymphnodemetastasisinpatientswithewingssarcoma AT liwanying amachinelearningbasedpredictivemodelforpredictinglymphnodemetastasisinpatientswithewingssarcoma AT zhangkai amachinelearningbasedpredictivemodelforpredictinglymphnodemetastasisinpatientswithewingssarcoma AT lirong amachinelearningbasedpredictivemodelforpredictinglymphnodemetastasisinpatientswithewingssarcoma AT zhangwenshi amachinelearningbasedpredictivemodelforpredictinglymphnodemetastasisinpatientswithewingssarcoma AT huzhaohui amachinelearningbasedpredictivemodelforpredictinglymphnodemetastasisinpatientswithewingssarcoma AT shibinsu amachinelearningbasedpredictivemodelforpredictinglymphnodemetastasisinpatientswithewingssarcoma AT liuqiang amachinelearningbasedpredictivemodelforpredictinglymphnodemetastasisinpatientswithewingssarcoma AT kuangsirui amachinelearningbasedpredictivemodelforpredictinglymphnodemetastasisinpatientswithewingssarcoma AT yinchengliang amachinelearningbasedpredictivemodelforpredictinglymphnodemetastasisinpatientswithewingssarcoma AT liwenle machinelearningbasedpredictivemodelforpredictinglymphnodemetastasisinpatientswithewingssarcoma AT zhouqian machinelearningbasedpredictivemodelforpredictinglymphnodemetastasisinpatientswithewingssarcoma AT liuwencai machinelearningbasedpredictivemodelforpredictinglymphnodemetastasisinpatientswithewingssarcoma AT xuchan machinelearningbasedpredictivemodelforpredictinglymphnodemetastasisinpatientswithewingssarcoma AT tangzhiri machinelearningbasedpredictivemodelforpredictinglymphnodemetastasisinpatientswithewingssarcoma AT dongshengtao machinelearningbasedpredictivemodelforpredictinglymphnodemetastasisinpatientswithewingssarcoma AT wanghaosheng machinelearningbasedpredictivemodelforpredictinglymphnodemetastasisinpatientswithewingssarcoma AT liwanying machinelearningbasedpredictivemodelforpredictinglymphnodemetastasisinpatientswithewingssarcoma AT zhangkai machinelearningbasedpredictivemodelforpredictinglymphnodemetastasisinpatientswithewingssarcoma AT lirong machinelearningbasedpredictivemodelforpredictinglymphnodemetastasisinpatientswithewingssarcoma AT zhangwenshi machinelearningbasedpredictivemodelforpredictinglymphnodemetastasisinpatientswithewingssarcoma AT huzhaohui machinelearningbasedpredictivemodelforpredictinglymphnodemetastasisinpatientswithewingssarcoma AT shibinsu machinelearningbasedpredictivemodelforpredictinglymphnodemetastasisinpatientswithewingssarcoma AT liuqiang machinelearningbasedpredictivemodelforpredictinglymphnodemetastasisinpatientswithewingssarcoma AT kuangsirui machinelearningbasedpredictivemodelforpredictinglymphnodemetastasisinpatientswithewingssarcoma AT yinchengliang machinelearningbasedpredictivemodelforpredictinglymphnodemetastasisinpatientswithewingssarcoma |