Cargando…

A Machine Learning-Based Predictive Model for Predicting Lymph Node Metastasis in Patients With Ewing’s Sarcoma

OBJECTIVE: In order to provide reference for clinicians and bring convenience to clinical work, we seeked to develop and validate a risk prediction model for lymph node metastasis (LNM) of Ewing’s sarcoma (ES) based on machine learning (ML) algorithms. METHODS: Clinicopathological data of 923 ES pat...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Wenle, Zhou, Qian, Liu, Wencai, Xu, Chan, Tang, Zhi-Ri, Dong, Shengtao, Wang, Haosheng, Li, Wanying, Zhang, Kai, Li, Rong, Zhang, Wenshi, Hu, Zhaohui, Shibin, Su, Liu, Qiang, Kuang, Sirui, Yin, Chengliang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9020377/
https://www.ncbi.nlm.nih.gov/pubmed/35463005
http://dx.doi.org/10.3389/fmed.2022.832108
_version_ 1784689523919159296
author Li, Wenle
Zhou, Qian
Liu, Wencai
Xu, Chan
Tang, Zhi-Ri
Dong, Shengtao
Wang, Haosheng
Li, Wanying
Zhang, Kai
Li, Rong
Zhang, Wenshi
Hu, Zhaohui
Shibin, Su
Liu, Qiang
Kuang, Sirui
Yin, Chengliang
author_facet Li, Wenle
Zhou, Qian
Liu, Wencai
Xu, Chan
Tang, Zhi-Ri
Dong, Shengtao
Wang, Haosheng
Li, Wanying
Zhang, Kai
Li, Rong
Zhang, Wenshi
Hu, Zhaohui
Shibin, Su
Liu, Qiang
Kuang, Sirui
Yin, Chengliang
author_sort Li, Wenle
collection PubMed
description OBJECTIVE: In order to provide reference for clinicians and bring convenience to clinical work, we seeked to develop and validate a risk prediction model for lymph node metastasis (LNM) of Ewing’s sarcoma (ES) based on machine learning (ML) algorithms. METHODS: Clinicopathological data of 923 ES patients from the Surveillance, Epidemiology, and End Results (SEER) database and 51 ES patients from multi-center external validation set were retrospectively collected. We applied ML algorithms to establish a risk prediction model. Model performance was checked using 10-fold cross-validation in the training set and receiver operating characteristic (ROC) curve analysis in external validation set. After determining the best model, a web-based calculator was made to promote the clinical application. RESULTS: LNM was confirmed or unable to evaluate in 13.86% (135 out of 974) ES patients. In multivariate logistic regression, race, T stage, M stage and lung metastases were independent predictors for LNM in ES. Six prediction models were established using random forest (RF), naive Bayes classifier (NBC), decision tree (DT), xgboost (XGB), gradient boosting machine (GBM), logistic regression (LR). In 10-fold cross-validation, the average area under curve (AUC) ranked from 0.705 to 0.764. In ROC curve analysis, AUC ranged from 0.612 to 0.727. The performance of the RF model ranked best. Accordingly, a web-based calculator was developed (https://share.streamlit.io/liuwencai2/es_lnm/main/es_lnm.py). CONCLUSION: With the help of clinicopathological data, clinicians can better identify LNM in ES patients. Risk prediction models established in this study performed well, especially the RF model.
format Online
Article
Text
id pubmed-9020377
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-90203772022-04-21 A Machine Learning-Based Predictive Model for Predicting Lymph Node Metastasis in Patients With Ewing’s Sarcoma Li, Wenle Zhou, Qian Liu, Wencai Xu, Chan Tang, Zhi-Ri Dong, Shengtao Wang, Haosheng Li, Wanying Zhang, Kai Li, Rong Zhang, Wenshi Hu, Zhaohui Shibin, Su Liu, Qiang Kuang, Sirui Yin, Chengliang Front Med (Lausanne) Medicine OBJECTIVE: In order to provide reference for clinicians and bring convenience to clinical work, we seeked to develop and validate a risk prediction model for lymph node metastasis (LNM) of Ewing’s sarcoma (ES) based on machine learning (ML) algorithms. METHODS: Clinicopathological data of 923 ES patients from the Surveillance, Epidemiology, and End Results (SEER) database and 51 ES patients from multi-center external validation set were retrospectively collected. We applied ML algorithms to establish a risk prediction model. Model performance was checked using 10-fold cross-validation in the training set and receiver operating characteristic (ROC) curve analysis in external validation set. After determining the best model, a web-based calculator was made to promote the clinical application. RESULTS: LNM was confirmed or unable to evaluate in 13.86% (135 out of 974) ES patients. In multivariate logistic regression, race, T stage, M stage and lung metastases were independent predictors for LNM in ES. Six prediction models were established using random forest (RF), naive Bayes classifier (NBC), decision tree (DT), xgboost (XGB), gradient boosting machine (GBM), logistic regression (LR). In 10-fold cross-validation, the average area under curve (AUC) ranked from 0.705 to 0.764. In ROC curve analysis, AUC ranged from 0.612 to 0.727. The performance of the RF model ranked best. Accordingly, a web-based calculator was developed (https://share.streamlit.io/liuwencai2/es_lnm/main/es_lnm.py). CONCLUSION: With the help of clinicopathological data, clinicians can better identify LNM in ES patients. Risk prediction models established in this study performed well, especially the RF model. Frontiers Media S.A. 2022-04-06 /pmc/articles/PMC9020377/ /pubmed/35463005 http://dx.doi.org/10.3389/fmed.2022.832108 Text en Copyright © 2022 Li, Zhou, Liu, Xu, Tang, Dong, Wang, Li, Zhang, Li, Zhang, Hu, Shibin, Liu, Kuang and Yin. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Medicine
Li, Wenle
Zhou, Qian
Liu, Wencai
Xu, Chan
Tang, Zhi-Ri
Dong, Shengtao
Wang, Haosheng
Li, Wanying
Zhang, Kai
Li, Rong
Zhang, Wenshi
Hu, Zhaohui
Shibin, Su
Liu, Qiang
Kuang, Sirui
Yin, Chengliang
A Machine Learning-Based Predictive Model for Predicting Lymph Node Metastasis in Patients With Ewing’s Sarcoma
title A Machine Learning-Based Predictive Model for Predicting Lymph Node Metastasis in Patients With Ewing’s Sarcoma
title_full A Machine Learning-Based Predictive Model for Predicting Lymph Node Metastasis in Patients With Ewing’s Sarcoma
title_fullStr A Machine Learning-Based Predictive Model for Predicting Lymph Node Metastasis in Patients With Ewing’s Sarcoma
title_full_unstemmed A Machine Learning-Based Predictive Model for Predicting Lymph Node Metastasis in Patients With Ewing’s Sarcoma
title_short A Machine Learning-Based Predictive Model for Predicting Lymph Node Metastasis in Patients With Ewing’s Sarcoma
title_sort machine learning-based predictive model for predicting lymph node metastasis in patients with ewing’s sarcoma
topic Medicine
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9020377/
https://www.ncbi.nlm.nih.gov/pubmed/35463005
http://dx.doi.org/10.3389/fmed.2022.832108
work_keys_str_mv AT liwenle amachinelearningbasedpredictivemodelforpredictinglymphnodemetastasisinpatientswithewingssarcoma
AT zhouqian amachinelearningbasedpredictivemodelforpredictinglymphnodemetastasisinpatientswithewingssarcoma
AT liuwencai amachinelearningbasedpredictivemodelforpredictinglymphnodemetastasisinpatientswithewingssarcoma
AT xuchan amachinelearningbasedpredictivemodelforpredictinglymphnodemetastasisinpatientswithewingssarcoma
AT tangzhiri amachinelearningbasedpredictivemodelforpredictinglymphnodemetastasisinpatientswithewingssarcoma
AT dongshengtao amachinelearningbasedpredictivemodelforpredictinglymphnodemetastasisinpatientswithewingssarcoma
AT wanghaosheng amachinelearningbasedpredictivemodelforpredictinglymphnodemetastasisinpatientswithewingssarcoma
AT liwanying amachinelearningbasedpredictivemodelforpredictinglymphnodemetastasisinpatientswithewingssarcoma
AT zhangkai amachinelearningbasedpredictivemodelforpredictinglymphnodemetastasisinpatientswithewingssarcoma
AT lirong amachinelearningbasedpredictivemodelforpredictinglymphnodemetastasisinpatientswithewingssarcoma
AT zhangwenshi amachinelearningbasedpredictivemodelforpredictinglymphnodemetastasisinpatientswithewingssarcoma
AT huzhaohui amachinelearningbasedpredictivemodelforpredictinglymphnodemetastasisinpatientswithewingssarcoma
AT shibinsu amachinelearningbasedpredictivemodelforpredictinglymphnodemetastasisinpatientswithewingssarcoma
AT liuqiang amachinelearningbasedpredictivemodelforpredictinglymphnodemetastasisinpatientswithewingssarcoma
AT kuangsirui amachinelearningbasedpredictivemodelforpredictinglymphnodemetastasisinpatientswithewingssarcoma
AT yinchengliang amachinelearningbasedpredictivemodelforpredictinglymphnodemetastasisinpatientswithewingssarcoma
AT liwenle machinelearningbasedpredictivemodelforpredictinglymphnodemetastasisinpatientswithewingssarcoma
AT zhouqian machinelearningbasedpredictivemodelforpredictinglymphnodemetastasisinpatientswithewingssarcoma
AT liuwencai machinelearningbasedpredictivemodelforpredictinglymphnodemetastasisinpatientswithewingssarcoma
AT xuchan machinelearningbasedpredictivemodelforpredictinglymphnodemetastasisinpatientswithewingssarcoma
AT tangzhiri machinelearningbasedpredictivemodelforpredictinglymphnodemetastasisinpatientswithewingssarcoma
AT dongshengtao machinelearningbasedpredictivemodelforpredictinglymphnodemetastasisinpatientswithewingssarcoma
AT wanghaosheng machinelearningbasedpredictivemodelforpredictinglymphnodemetastasisinpatientswithewingssarcoma
AT liwanying machinelearningbasedpredictivemodelforpredictinglymphnodemetastasisinpatientswithewingssarcoma
AT zhangkai machinelearningbasedpredictivemodelforpredictinglymphnodemetastasisinpatientswithewingssarcoma
AT lirong machinelearningbasedpredictivemodelforpredictinglymphnodemetastasisinpatientswithewingssarcoma
AT zhangwenshi machinelearningbasedpredictivemodelforpredictinglymphnodemetastasisinpatientswithewingssarcoma
AT huzhaohui machinelearningbasedpredictivemodelforpredictinglymphnodemetastasisinpatientswithewingssarcoma
AT shibinsu machinelearningbasedpredictivemodelforpredictinglymphnodemetastasisinpatientswithewingssarcoma
AT liuqiang machinelearningbasedpredictivemodelforpredictinglymphnodemetastasisinpatientswithewingssarcoma
AT kuangsirui machinelearningbasedpredictivemodelforpredictinglymphnodemetastasisinpatientswithewingssarcoma
AT yinchengliang machinelearningbasedpredictivemodelforpredictinglymphnodemetastasisinpatientswithewingssarcoma