Cargando…
A unified model of the task-evoked pupil response
The pupil dilates and reconstricts following task events. It is popular to model this task-evoked pupil response as a linear transformation of event-locked impulses, whose amplitudes are used as estimates of arousal. We show that this model is incorrect and propose an alternative model based on the...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9020670/ https://www.ncbi.nlm.nih.gov/pubmed/35442730 http://dx.doi.org/10.1126/sciadv.abi9979 |
Sumario: | The pupil dilates and reconstricts following task events. It is popular to model this task-evoked pupil response as a linear transformation of event-locked impulses, whose amplitudes are used as estimates of arousal. We show that this model is incorrect and propose an alternative model based on the physiological finding that a common neural input drives saccades and pupil size. The estimates of arousal from our model agreed with key predictions: Arousal scaled with task difficulty and behavioral performance but was invariant to small differences in trial duration. Moreover, the model offers a unified explanation for a wide range of phenomena: entrainment of pupil size and saccades to task timing, modulation of pupil response amplitude and noise with task difficulty, reaction time–dependent modulation of pupil response timing and amplitude, a constrictory pupil response time-locked to saccades, and task-dependent distortion of this saccade-locked pupil response. |
---|