Cargando…
Blind demixing methods for recovering dense neuronal morphology from barcode imaging data
Cellular barcoding methods offer the exciting possibility of ‘infinite-pseudocolor’ anatomical reconstruction—i.e., assigning each neuron its own random unique barcoded ‘pseudocolor,’ and then using these pseudocolors to trace the microanatomy of each neuron. Here we use simulations, based on densel...
Autores principales: | Chen, Shuonan, Loper, Jackson, Zhou, Pengcheng, Paninski, Liam |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9020678/ https://www.ncbi.nlm.nih.gov/pubmed/35395020 http://dx.doi.org/10.1371/journal.pcbi.1009991 |
Ejemplares similares
-
BARcode DEmixing through Non-negative Spatial Regression (BarDensr)
por: Chen, Shuonan, et al.
Publicado: (2021) -
Fast online deconvolution of calcium imaging data
por: Friedrich, Johannes, et al.
Publicado: (2017) -
maskNMF: A denoise-sparsen-detect approach for extracting neural signals from dense imaging data
por: Pasarkar, Amol, et al.
Publicado: (2023) -
Demixed principal component analysis of neural population data
por: Kobak, Dmitry, et al.
Publicado: (2016) -
Demixing Population Activity in Higher Cortical Areas
por: Machens, Christian K.
Publicado: (2010)