Cargando…

Effective population size for culturally evolving traits

Population size has long been considered an important driver of cultural diversity and complexity. Results from population genetics, however, demonstrate that in populations with complex demographic structure or mode of inheritance, it is not the census population size, N, but the effective size of...

Descripción completa

Detalles Bibliográficos
Autores principales: Deffner, Dominik, Kandler, Anne, Fogarty, Laurel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9020689/
https://www.ncbi.nlm.nih.gov/pubmed/35395004
http://dx.doi.org/10.1371/journal.pcbi.1009430
Descripción
Sumario:Population size has long been considered an important driver of cultural diversity and complexity. Results from population genetics, however, demonstrate that in populations with complex demographic structure or mode of inheritance, it is not the census population size, N, but the effective size of a population, N(e), that determines important evolutionary parameters. Here, we examine the concept of effective population size for traits that evolve culturally, through processes of innovation and social learning. We use mathematical and computational modeling approaches to investigate how cultural N(e) and levels of diversity depend on (1) the way traits are learned, (2) population connectedness, and (3) social network structure. We show that one-to-many and frequency-dependent transmission can temporally or permanently lower effective population size compared to census numbers. We caution that migration and cultural exchange can have counter-intuitive effects on N(e). Network density in random networks leaves N(e) unchanged, scale-free networks tend to decrease and small-world networks tend to increase N(e) compared to census numbers. For one-to-many transmission and different network structures, larger effective sizes are closely associated with higher cultural diversity. For connectedness, however, even small amounts of migration and cultural exchange result in high diversity independently of N(e). Extending previous work, our results highlight the importance of carefully defining effective population size for cultural systems and show that inferring N(e) requires detailed knowledge about underlying cultural and demographic processes.