Cargando…

Smart-parking management algorithms in smart city

Recently, various advanced technologies have been employed to build smart cities. Smart cities aim at improving the quality of life through the delivery of better services. One of the current services that are essential for any smart city, is the availability of enough parking spaces to ensure smoot...

Descripción completa

Detalles Bibliográficos
Autores principales: Jemmali, Mahdi, Melhim, Loai Kayed B., Alharbi, Mafawez T., Bajahzar, Abdullah, Omri, Mohamed Nazih
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9020765/
https://www.ncbi.nlm.nih.gov/pubmed/35444220
http://dx.doi.org/10.1038/s41598-022-10076-4
Descripción
Sumario:Recently, various advanced technologies have been employed to build smart cities. Smart cities aim at improving the quality of life through the delivery of better services. One of the current services that are essential for any smart city, is the availability of enough parking spaces to ensure smooth and easy traffic flow. This research proposes a new framework for solving the problem of parking lot allocation, which emphasizes the equitable allocation of people based on the overall count of people in each parking space. The allocation process is performed while considering the available parking lots in each parking space. To accomplish the desired goal, this research will develop a set of seven algorithms to reduce the gap in the number of people between parking spaces. Many experiments carried out on 2430 different cases to cover several aspects such as the execution time and the gap calculations, were used to explore the performance of the developed algorithm. Analyzing the obtained results indicates a good performance behavior of the developed algorithms. Also, it shows that the developed algorithms can solve the studied problem in terms of gap and time calculations. The MR algorithm gained excellent performance results compared to one of the best algorithms in the literature. The MR algorithm has a percentage of 96.1 %, an average gap of 0.02, and a good execution time of 0.007 s.