Cargando…
Comparing Machine Learning Models and Statistical Models for Predicting Heart Failure Events: A Systematic Review and Meta-Analysis
OBJECTIVE: To compare the performance, clinical feasibility, and reliability of statistical and machine learning (ML) models in predicting heart failure (HF) events. BACKGROUND: Although ML models have been proposed to revolutionize medicine, their promise in predicting HF events has not been invest...
Autores principales: | Sun, Zhoujian, Dong, Wei, Shi, Hanrui, Ma, Hong, Cheng, Lechao, Huang, Zhengxing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9020815/ https://www.ncbi.nlm.nih.gov/pubmed/35463786 http://dx.doi.org/10.3389/fcvm.2022.812276 |
Ejemplares similares
-
Machine learning models in heart failure with mildly reduced ejection fraction patients
por: Zhao, Hengli, et al.
Publicado: (2022) -
A Machine Learning-Based Prediction Model for Acute Kidney Injury in Patients With Congestive Heart Failure
por: Peng, Xi, et al.
Publicado: (2022) -
Using a machine learning model to predict the development of acute kidney injury in patients with heart failure
por: Liu, Wen Tao, et al.
Publicado: (2022) -
Machine Learning for Predicting Heart Failure Progression in Hypertrophic Cardiomyopathy
por: Fahmy, Ahmed S., et al.
Publicado: (2021) -
Editorial: Machine learning and data science in heart failure and stroke
por: Roever, Leonardo, et al.
Publicado: (2023)