Cargando…
Machine Learning-Based Prediction Model of Preterm Birth Using Electronic Health Record
OBJECTIVE: Preterm birth (PTB) was one of the leading causes of neonatal death. Predicting PTB in the first trimester and second trimester will help improve pregnancy outcomes. The aim of this study is to propose a prediction model based on machine learning algorithms for PTB. METHOD: Data for this...
Autores principales: | Sun, Qi, Zou, Xiaoxuan, Yan, Yousheng, Zhang, Hongguang, Wang, Shuo, Gao, Yongmei, Liu, Haiyan, Liu, Shuyu, Lu, Jianbo, Yang, Ying, Ma, Xu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9020923/ https://www.ncbi.nlm.nih.gov/pubmed/35463669 http://dx.doi.org/10.1155/2022/9635526 |
Ejemplares similares
-
Dense phenotyping from electronic health records enables machine learning-based prediction of preterm birth
por: Abraham, Abin, et al.
Publicado: (2022) -
Machine Learning Approach for Preterm Birth Prediction Using Health Records: Systematic Review
por: Sharifi-Heris, Zahra, et al.
Publicado: (2022) -
Microbiome Preterm Birth DREAM Challenge: Crowdsourcing Machine Learning Approaches to Advance Preterm Birth Research
por: Golob, Jonathan L., et al.
Publicado: (2023) -
Predicting preterm births from electrohysterogram recordings via deep learning
por: Goldsztejn, Uri, et al.
Publicado: (2023) -
Association of Gastroesophageal Reflux Disease with Preterm Birth: Machine Learning Analysis
por: Lee, Kwang-Sig, et al.
Publicado: (2021)