Cargando…
Network Intrusion Detection Method Based on FCWGAN and BiLSTM
Imbalanced datasets greatly affect the analysis capability of intrusion detection models, biasing their classification results toward normal behavior and leading to high false-positive and false-negative rates. To alleviate the impact of class imbalance on the detection accuracy of network intrusion...
Autores principales: | Ma, Zexuan, Li, Jin, Song, Yafei, Wu, Xuan, Chen, Chen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9020925/ https://www.ncbi.nlm.nih.gov/pubmed/35463253 http://dx.doi.org/10.1155/2022/6591140 |
Ejemplares similares
-
Network Intrusion Detection Method Combining CNN and BiLSTM in Cloud Computing Environment
por: Gao, Jing
Publicado: (2022) -
Non-intrusive speech quality assessment with attention-based ResNet-BiLSTM
por: Shen, Kailai, et al.
Publicado: (2023) -
Human Activity Recognition Based on Residual Network and BiLSTM
por: Li, Yong, et al.
Publicado: (2022) -
Digitization of Handwritten Chess Scoresheets with a BiLSTM Network
por: Majid, Nishatul, et al.
Publicado: (2022) -
BJBN: BERT-JOIN-BiLSTM Networks for Medical Auxiliary Diagnostic
por: Xu, Chuanjie, et al.
Publicado: (2022)