Cargando…
Pathological neural networks and artificial neural networks in ALS: diagnostic classification based on pathognomonic neuroimaging features
The description of group-level, genotype- and phenotype-associated imaging traits is academically important, but the practical demands of clinical neurology centre on the accurate classification of individual patients into clinically relevant diagnostic, prognostic and phenotypic categories. Similar...
Autores principales: | Bede, Peter, Murad, Aizuri, Hardiman, Orla |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9021106/ https://www.ncbi.nlm.nih.gov/pubmed/34585269 http://dx.doi.org/10.1007/s00415-021-10801-5 |
Ejemplares similares
-
Development of an Automated MRI-Based Diagnostic Protocol for Amyotrophic Lateral Sclerosis Using Disease-Specific Pathognomonic Features: A Quantitative Disease-State Classification Study
por: Schuster, Christina, et al.
Publicado: (2016) -
Clusters of anatomical disease-burden patterns in ALS: a data-driven approach confirms radiological subtypes
por: Bede, Peter, et al.
Publicado: (2022) -
Imaging data reveal divergent longitudinal trajectories in PLS, ALS and poliomyelitis survivors: Group-level and single-subject traits
por: Tahedl, Marlene, et al.
Publicado: (2021) -
Virtual brain biopsies in amyotrophic lateral sclerosis: Diagnostic classification based on in vivo pathological patterns
por: Bede, Peter, et al.
Publicado: (2017) -
White matter microstructure alterations in frontotemporal dementia: Phenotype‐associated signatures and single‐subject interpretation
por: McKenna, Mary Clare, et al.
Publicado: (2022)