Cargando…
Pan-cancer prognostic genetic mutations and clinicopathological factors associated with survival outcomes: a systematic review
Cancer is a leading cause of death, accounting for almost 10 million deaths annually worldwide. Personalised therapies harnessing genetic and clinical information may improve survival outcomes and reduce the side effects of treatments. The aim of this study is to appraise published evidence on clini...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9021198/ https://www.ncbi.nlm.nih.gov/pubmed/35444210 http://dx.doi.org/10.1038/s41698-022-00269-5 |
Sumario: | Cancer is a leading cause of death, accounting for almost 10 million deaths annually worldwide. Personalised therapies harnessing genetic and clinical information may improve survival outcomes and reduce the side effects of treatments. The aim of this study is to appraise published evidence on clinicopathological factors and genetic mutations (single nucleotide polymorphisms [SNPs]) associated with prognosis across 11 cancer types: lung, colorectal, breast, prostate, melanoma, renal, glioma, bladder, leukaemia, endometrial, ovarian. A systematic literature search of PubMed/MEDLINE and Europe PMC was conducted from database inception to July 1, 2021. 2497 publications from PubMed/MEDLINE and 288 preprints from Europe PMC were included. Subsequent reference and citation search was conducted and a further 39 articles added. 2824 articles were reviewed by title/abstract and 247 articles were selected for systematic review. Majority of the articles were retrospective cohort studies focusing on one cancer type, 8 articles were on pan-cancer level and 6 articles were reviews. Studies analysing clinicopathological factors included 908,567 patients and identified 238 factors, including age, gender, stage, grade, size, site, subtype, invasion, lymph nodes. Genetic studies included 210,802 patients and identified 440 gene mutations associated with cancer survival, including genes TP53, BRCA1, BRCA2, BRAF, KRAS, BIRC5. We generated a comprehensive knowledge base of biomarkers that can be used to tailor treatment according to patients’ unique genetic and clinical characteristics. Our pan-cancer investigation uncovers the biomarker landscape and their combined influence that may help guide health practitioners and researchers across the continuum of cancer care from drug development to long-term survivorship. |
---|