Cargando…
Machine learning approaches to predicting no-shows in pediatric medical appointment
Patients’ no-shows, scheduled but unattended medical appointments, have a direct negative impact on patients’ health, due to discontinuity of treatment and late presentation to care. They also lead to inefficient use of medical resources in hospitals and clinics. The ability to predict a likely no-s...
Autores principales: | Liu, Dianbo, Shin, Won-Yong, Sprecher, Eli, Conroy, Kathleen, Santiago, Omar, Wachtel, Gal, Santillana, Mauricio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9021231/ https://www.ncbi.nlm.nih.gov/pubmed/35444260 http://dx.doi.org/10.1038/s41746-022-00594-w |
Ejemplares similares
-
Predicting no-show appointments in a pediatric hospital in Chile using machine learning
por: Dunstan, J., et al.
Publicado: (2023) -
Pediatric Dental Appointments No-show: Rates and Reasons
por: Bhatia, Rupinder, et al.
Publicado: (2018) -
Machine Learning Predictions on Outpatient No-Show Appointments in a Malaysia Major Tertiary Hospital
por: Ahmad Hamdan, Abdullah Fahim, et al.
Publicado: (2023) -
Real-Time Forecasting of the COVID-19 Outbreak in Chinese Provinces: Machine Learning Approach Using Novel Digital Data and Estimates From Mechanistic Models
por: Liu, Dianbo, et al.
Publicado: (2020) -
Correction: Real-Time Forecasting of the COVID-19 Outbreak in Chinese Provinces: Machine Learning Approach Using Novel Digital Data and Estimates From Mechanistic Models
por: Liu, Dianbo, et al.
Publicado: (2020)