Cargando…
In-depth insights into Alzheimer’s disease by using explainable machine learning approach
Alzheimer’s disease is still a field of research with lots of open questions. The complexity of the disease prevents the early diagnosis before visible symptoms regarding the individual’s cognitive capabilities occur. This research presents an in-depth analysis of a huge data set encompassing medica...
Autores principales: | Bogdanovic, Bojan, Eftimov, Tome, Simjanoska, Monika |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9021280/ https://www.ncbi.nlm.nih.gov/pubmed/35444165 http://dx.doi.org/10.1038/s41598-022-10202-2 |
Ejemplares similares
-
Non-Invasive Blood Pressure Estimation from ECG Using Machine Learning Techniques
por: Simjanoska, Monika, et al.
Publicado: (2018) -
Optimising an FFQ Using a Machine Learning Pipeline to teach an Efficient Nutrient Intake Predictive Model
por: Reščič, Nina, et al.
Publicado: (2020) -
Dietary, comorbidity, and geo-economic data fusion for explainable COVID-19 mortality prediction
por: Trajanoska, Milena, et al.
Publicado: (2022) -
An explainable machine learning based prediction model for Alzheimer's disease in China longitudinal aging study
por: Yue, Ling, et al.
Publicado: (2023) -
A cross-sectional study of explainable machine learning in Alzheimer’s disease: diagnostic classification using MR radiomic features
por: Leandrou, Stephanos, et al.
Publicado: (2023)