Cargando…
Remaining useful life prognosis of turbofan engines based on deep feature extraction and fusion
In turbofan engine datasets, to address problems, such as noise interference, diverse data types, large data volumes, complex feature extraction, inability to effectively describe degradation trends, and poor remaining useful life (RUL) prognosis effects, a remaining useful life prognosis model comb...
Autores principales: | Peng, Cheng, Chen, Yufeng, Gui, Weihua, Tang, Zhaohui, Li, Changyun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9021315/ https://www.ncbi.nlm.nih.gov/pubmed/35444248 http://dx.doi.org/10.1038/s41598-022-10191-2 |
Ejemplares similares
-
A Remaining Useful Life Prognosis of Turbofan Engine Using Temporal and Spatial Feature Fusion
por: Peng, Cheng, et al.
Publicado: (2021) -
A Spatio-Temporal Attention Mechanism Based Approach for Remaining Useful Life Prediction of Turbofan Engine
por: Peng, Cheng, et al.
Publicado: (2022) -
Remaining Useful Life Prognosis for Turbofan Engine Using Explainable Deep Neural Networks with Dimensionality Reduction
por: Hong, Chang Woo, et al.
Publicado: (2020) -
A Multi-Featured Factor Analysis and Dynamic Window Rectification Method for Remaining Useful Life Prognosis of Rolling Bearings
por: Peng, Cheng, et al.
Publicado: (2023) -
Advanced Control of Turbofan Engines
por: Richter, Hanz
Publicado: (2012)