Cargando…
Fairness in Cardiac Magnetic Resonance Imaging: Assessing Sex and Racial Bias in Deep Learning-Based Segmentation
BACKGROUND: Artificial intelligence (AI) techniques have been proposed for automation of cine CMR segmentation for functional quantification. However, in other applications AI models have been shown to have potential for sex and/or racial bias. The objective of this paper is to perform the first ana...
Autores principales: | Puyol-Antón, Esther, Ruijsink, Bram, Mariscal Harana, Jorge, Piechnik, Stefan K., Neubauer, Stefan, Petersen, Steffen E., Razavi, Reza, Chowienczyk, Phil, King, Andrew P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9021445/ https://www.ncbi.nlm.nih.gov/pubmed/35463778 http://dx.doi.org/10.3389/fcvm.2022.859310 |
Ejemplares similares
-
Deep Learning for Classification and Selection of Cine CMR Images to Achieve Fully Automated Quality-Controlled CMR Analysis From Scanner to Report
por: Vergani, Vittoria, et al.
Publicado: (2021) -
Aortic Distensibility Measured by Automated Analysis of Magnetic Resonance Imaging Predicts Adverse Cardiovascular Events in UK Biobank
por: Cecelja, Marina, et al.
Publicado: (2022) -
An artificial intelligence tool for automated analysis of large-scale unstructured clinical cine cardiac magnetic resonance databases
por: Mariscal-Harana, Jorge, et al.
Publicado: (2023) -
The Role of AI in Characterizing the DCM Phenotype
por: Asher, Clint, et al.
Publicado: (2021) -
Fully Automated, Quality-Controlled Cardiac Analysis From CMR: Validation and Large-Scale Application to Characterize Cardiac Function
por: Ruijsink, Bram, et al.
Publicado: (2019)