Cargando…

Effects of a 6-Min Treadmill Walking Test on Dual-Task Gait Performance and Prefrontal Hemodynamics in People With Multiple Sclerosis

Fatigue is one of the most limiting symptoms in people with multiple sclerosis (pwMS) and can be subdivided into trait and state fatigue. Activity-induced state fatigue describes the temporary decline in motor and/or cognitive performance (motor and cognitive performance fatigability, respectively)...

Descripción completa

Detalles Bibliográficos
Autores principales: Broscheid, Kim-Charline, Behrens, Martin, Dettmers, Christian, Jöbges, Michael, Schega, Lutz
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9022001/
https://www.ncbi.nlm.nih.gov/pubmed/35463151
http://dx.doi.org/10.3389/fneur.2022.822952
_version_ 1784689979428962304
author Broscheid, Kim-Charline
Behrens, Martin
Dettmers, Christian
Jöbges, Michael
Schega, Lutz
author_facet Broscheid, Kim-Charline
Behrens, Martin
Dettmers, Christian
Jöbges, Michael
Schega, Lutz
author_sort Broscheid, Kim-Charline
collection PubMed
description Fatigue is one of the most limiting symptoms in people with multiple sclerosis (pwMS) and can be subdivided into trait and state fatigue. Activity-induced state fatigue describes the temporary decline in motor and/or cognitive performance (motor and cognitive performance fatigability, respectively) and/or the increase in the perception of fatigue (perceived fatigability) in response to motor or cognitive tasks. To the best of our knowledge, the effects of a 6-min walk test (6MWT), which was often used to assess motor performance fatigability in pwMS, on motor-cognitive dual-task performance (i.e., walking + arithmetic task) and prefrontal cortex (PFC) hemodynamics are not well-known. This is of importance, since daily activities are often performed as multitasks and a worse dual-task walking performance is associated with an increased risk of falling. Consequently, we investigated the effect of a fast 6MWT (comfort velocity + 15%) performed on a treadmill on motor-cognitive performance fatigability (spatio-temporal gait parameters/accuracy during the arithmetic task) and perceived fatigability measures (rating of perceived exhaustion; RPE) as well as PFC hemodynamics recorded during dual-task walking in pwMS and healthy controls (HCs). Twenty pwMS (48.3 ± 9.0 years; 13 females/7 males; expanded disability status scale 2.7 ± 1.0, first diagnosis 13.8 ± 8.8 years) and 24 HC with similar age and sex (48.6 ± 7.9 years; 17 females/7 males) were included. Only cognitive performance fatigability (increased error rate) during dual-task walking was found after the fast 6MWT on the treadmill in pwMS. However, the changes in gait parameters did not indicate motor performance fatigability, although both the groups reported perceived fatigability (increased RPE) after the fast 6MWT. Moreover, no change in the PFC activation was detected in both groups. Our results suggest that the intensity and/or duration of the fast 6MWT was not sufficient to induce motor performance fatigability in pwMS. These factors should be addressed by future studies on this topic, which should also consider further parameters, e.g., muscular oxygenation and/or myoelectrical activity, to verify that exercise intensity and/or duration was appropriate to induce motor performance fatigability in pwMS. CLINICAL TRIAL REGISTER: DRKS00021057.
format Online
Article
Text
id pubmed-9022001
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-90220012022-04-22 Effects of a 6-Min Treadmill Walking Test on Dual-Task Gait Performance and Prefrontal Hemodynamics in People With Multiple Sclerosis Broscheid, Kim-Charline Behrens, Martin Dettmers, Christian Jöbges, Michael Schega, Lutz Front Neurol Neurology Fatigue is one of the most limiting symptoms in people with multiple sclerosis (pwMS) and can be subdivided into trait and state fatigue. Activity-induced state fatigue describes the temporary decline in motor and/or cognitive performance (motor and cognitive performance fatigability, respectively) and/or the increase in the perception of fatigue (perceived fatigability) in response to motor or cognitive tasks. To the best of our knowledge, the effects of a 6-min walk test (6MWT), which was often used to assess motor performance fatigability in pwMS, on motor-cognitive dual-task performance (i.e., walking + arithmetic task) and prefrontal cortex (PFC) hemodynamics are not well-known. This is of importance, since daily activities are often performed as multitasks and a worse dual-task walking performance is associated with an increased risk of falling. Consequently, we investigated the effect of a fast 6MWT (comfort velocity + 15%) performed on a treadmill on motor-cognitive performance fatigability (spatio-temporal gait parameters/accuracy during the arithmetic task) and perceived fatigability measures (rating of perceived exhaustion; RPE) as well as PFC hemodynamics recorded during dual-task walking in pwMS and healthy controls (HCs). Twenty pwMS (48.3 ± 9.0 years; 13 females/7 males; expanded disability status scale 2.7 ± 1.0, first diagnosis 13.8 ± 8.8 years) and 24 HC with similar age and sex (48.6 ± 7.9 years; 17 females/7 males) were included. Only cognitive performance fatigability (increased error rate) during dual-task walking was found after the fast 6MWT on the treadmill in pwMS. However, the changes in gait parameters did not indicate motor performance fatigability, although both the groups reported perceived fatigability (increased RPE) after the fast 6MWT. Moreover, no change in the PFC activation was detected in both groups. Our results suggest that the intensity and/or duration of the fast 6MWT was not sufficient to induce motor performance fatigability in pwMS. These factors should be addressed by future studies on this topic, which should also consider further parameters, e.g., muscular oxygenation and/or myoelectrical activity, to verify that exercise intensity and/or duration was appropriate to induce motor performance fatigability in pwMS. CLINICAL TRIAL REGISTER: DRKS00021057. Frontiers Media S.A. 2022-04-07 /pmc/articles/PMC9022001/ /pubmed/35463151 http://dx.doi.org/10.3389/fneur.2022.822952 Text en Copyright © 2022 Broscheid, Behrens, Dettmers, Jöbges and Schega. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Neurology
Broscheid, Kim-Charline
Behrens, Martin
Dettmers, Christian
Jöbges, Michael
Schega, Lutz
Effects of a 6-Min Treadmill Walking Test on Dual-Task Gait Performance and Prefrontal Hemodynamics in People With Multiple Sclerosis
title Effects of a 6-Min Treadmill Walking Test on Dual-Task Gait Performance and Prefrontal Hemodynamics in People With Multiple Sclerosis
title_full Effects of a 6-Min Treadmill Walking Test on Dual-Task Gait Performance and Prefrontal Hemodynamics in People With Multiple Sclerosis
title_fullStr Effects of a 6-Min Treadmill Walking Test on Dual-Task Gait Performance and Prefrontal Hemodynamics in People With Multiple Sclerosis
title_full_unstemmed Effects of a 6-Min Treadmill Walking Test on Dual-Task Gait Performance and Prefrontal Hemodynamics in People With Multiple Sclerosis
title_short Effects of a 6-Min Treadmill Walking Test on Dual-Task Gait Performance and Prefrontal Hemodynamics in People With Multiple Sclerosis
title_sort effects of a 6-min treadmill walking test on dual-task gait performance and prefrontal hemodynamics in people with multiple sclerosis
topic Neurology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9022001/
https://www.ncbi.nlm.nih.gov/pubmed/35463151
http://dx.doi.org/10.3389/fneur.2022.822952
work_keys_str_mv AT broscheidkimcharline effectsofa6mintreadmillwalkingtestondualtaskgaitperformanceandprefrontalhemodynamicsinpeoplewithmultiplesclerosis
AT behrensmartin effectsofa6mintreadmillwalkingtestondualtaskgaitperformanceandprefrontalhemodynamicsinpeoplewithmultiplesclerosis
AT dettmerschristian effectsofa6mintreadmillwalkingtestondualtaskgaitperformanceandprefrontalhemodynamicsinpeoplewithmultiplesclerosis
AT jobgesmichael effectsofa6mintreadmillwalkingtestondualtaskgaitperformanceandprefrontalhemodynamicsinpeoplewithmultiplesclerosis
AT schegalutz effectsofa6mintreadmillwalkingtestondualtaskgaitperformanceandprefrontalhemodynamicsinpeoplewithmultiplesclerosis