Cargando…
A Comparative Study of Data-Driven Models for Travel Destination Characterization
Characterizing items for content-based recommender systems is a challenging task in complex domains such as travel and tourism. In the case of destination recommendation, no feature set can be readily used as a similarity ground truth, which makes it hard to evaluate the quality of destination chara...
Autores principales: | Dietz, Linus W., Sertkan, Mete, Myftija, Saadi, Thimbiri Palage, Sameera, Neidhardt, Julia, Wörndl, Wolfgang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9022027/ https://www.ncbi.nlm.nih.gov/pubmed/35464121 http://dx.doi.org/10.3389/fdata.2022.829939 |
Ejemplares similares
-
Identifying Travel Regions Using Location-Based Social Network Check-in Data
por: Sen, Avradip, et al.
Publicado: (2019) -
A review on individual and multistakeholder fairness in tourism recommender systems
por: Banerjee, Ashmi, et al.
Publicado: (2023) -
Modeling information diffusion in social media: data-driven observations
por: Iamnitchi, Adriana, et al.
Publicado: (2023) -
A data-driven spatial approach to characterize the flood hazard
por: Mostafiz, Rubayet Bin, et al.
Publicado: (2022) -
Machine Learning and Artificial Intelligence: Two Fellow Travelers on the Quest for Intelligent Behavior in Machines
por: Kersting, Kristian
Publicado: (2018)