Cargando…
Non-Invasive Measurement Using Deep Learning Algorithm Based on Multi-Source Features Fusion to Predict PD-L1 Expression and Survival in NSCLC
BACKGROUND: Programmed death-ligand 1 (PD-L1) assessment of lung cancer in immunohistochemical assays was only approved diagnostic biomarker for immunotherapy. But the tumor proportion score (TPS) of PD-L1 was challenging owing to invasive sampling and intertumoral heterogeneity. There was a strong...
Autores principales: | Wang, Chengdi, Ma, Jiechao, Shao, Jun, Zhang, Shu, Li, Jingwei, Yan, Junpeng, Zhao, Zhehao, Bai, Congchen, Yu, Yizhou, Li, Weimin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9022118/ https://www.ncbi.nlm.nih.gov/pubmed/35464416 http://dx.doi.org/10.3389/fimmu.2022.828560 |
Ejemplares similares
-
Predicting EGFR and PD-L1 Status in NSCLC Patients Using Multitask AI System Based on CT Images
por: Wang, Chengdi, et al.
Publicado: (2022) -
Radiogenomic System for Non-Invasive Identification of Multiple Actionable Mutations and PD-L1 Expression in Non-Small Cell Lung Cancer Based on CT Images
por: Shao, Jun, et al.
Publicado: (2022) -
The long-term health outcomes, pathophysiological mechanisms and multidisciplinary management of long COVID
por: Li, Jingwei, et al.
Publicado: (2023) -
Development and validation of an abnormality-derived deep-learning diagnostic system for major respiratory diseases
por: Wang, Chengdi, et al.
Publicado: (2022) -
DeepLN: A Multi-Task AI Tool to Predict the Imaging Characteristics, Malignancy and Pathological Subtypes in CT-Detected Pulmonary Nodules
por: Wang, Chengdi, et al.
Publicado: (2022)